Microturbine CHP with Space Heating and Cooling

John DeLise, P.E. Advanced Power Systems Engineering, P.C.

Project Objectives

- Design and install a CHP system for a medium sized business that achieves an overall efficiency of 70% to 80% which significantly exceeds the efficiency of current electric power plants (approximately 33%)
- Reduce the total cost of Natural Gas and Electricity Bills
- Achieve a 5 year payback period
- Improve the reliability and quality of electric power for the customer
- Design and install computer control system (customer perception) for automated operation

Electric Power Generation

- Three 60 KW Capstone Microturbines
- Natural Gas Fired (804,000 BTU/hr per Microturbine)
- Efficiency = $28 \pm 2\%$
- Features:

Grid Parallel

Compliance with UL 1741 (Inverters, Converters and Controllers for use in Independent Power Systems)

Stand Alone (with Automatic Transition from Grid Parallel Mode)

Load Following

Auto-Startup and Auto-Shutdown

Remote Monitoring and Control through Modem and Serial Port

Capstone Microturbines and Copeland Natural Gas Compressors

Heat Recovery

- Three custom designed Stainless Steel Heat Recovery Units
- Heat Recovered from Exhaust Gas is used to generate Hot Water
- Provides Building Heating and the Thermal Energy Required to Operate Three 20 Ton Lithium Bromide Absorption Chillers for Building Cooling
- Generates 1,070,000 BTU/hr
- Maximum Water Outlet Temperature = 210 Deg F (measured)
- Programmable Heat Exchanger Bypass Door

Three Heat Recovery Units

Chilled Water Production

- Three Yazaki 20 Ton Hot Water Fired Lithium Bromide Absorption Chillers
- 48 Deg F Chilled Water is produced from Hot Water generated by Heat Recovery Units
- Three Water Circuits:

Heat Medium Water must be kept above 152 Deg F (7½ HP Pump) Chilled Water must be kept above 38 Deg F (7½ HP Pump) Cooling Tower Water must be kept above 75 Deg F (10 HP Pump)

- Chiller Control System provides Run/Stop Signal to Pump VFD
- Electric Power required for pump operation = 23 KW (approximately)

Three 20 Ton Yazaki Absorption Chillers

CHP Control System

- Controls all CHP subsystems (microturbines, heat recovery unit, absorption chillers and pumps)
- Retrofit standard Desktop Computer with Data Acquisition and Control Boards
- Agilent VeePro Software with Graphical User Interface (GUI)
- Thermocouples for Water and Exhaust Gas Temp Measurement
- Transducers for Pump Discharge Pressure Measurement
- Variable Frequency Drives for Pump Control
- Electrically Actuated Valves for seasonal changes (Honeywell)
- Receives Run/Stop signal from Master Microturbine
- Receives Grid Connect/Stand Alone signal from Capstone Dual Mode Controller (DMC)

Relay Protection

- Capstone Microturbines have UL Listed Protective Features for Voltage, Frequency, and Current
- The electric grid area managed by Consolidated Edison of New York requires compliance with Relay Protection described in Specification EO-2115
- Required Equipment includes:

Intertie Breaker

General Relay Protection for Voltage, Frequency and Current

Three-Phase Reverse Power Protection

V.I.P. Country Club CHP Facility 600 Amp Capstone DMC Equipped Shunt Trip Intertie Breaker

ABB Alpha Plus Power Meter and Protective Relay Control Panel

Capstone Remote Monitoring Software (Display Shows 143 KW)

And Barrier	To No. Sym	tem State W Tacali GUSSA	Spearst 181 93508 1974 93920 1974	84.5 76.8	(pr. V Compression In (n. i) (n. i)	215	Parameter 4
1	J LOAD	507239	58050 1174	827 77A	91.8	250	
	Pa Codok Intex 3at Coto Intex Sat Sat Sat Sat Sat Sat Sat Sat Sat Sat	SE2207-038 6,44 6 Freed (x89) 110 17 28 60 100 50 100 50 100 50 100 50 100 100 100 10	IZ795 (and 14) Economic Compare Functions Functions Functions	1 12.24 spend (cpc) 1 spend (cpc) 1		Power Metter Power Meter #20/ BS 4 F0/ BB #20/ BB BB Evel Long Management Horuster	
	9.45 30 31.45	Fad 3240	MutiP Mixte File	e Turbre Turbre CPC Lock Coren		ettraja (Jose	

Results and Projections

- CHP System efficiencies are approximately 70% during Heating and Cooling Seasons
- Projections and initial system performance indicate that the Demand Change during the Cooling Season will be reduced by approximately 250 KW
- Backup Electric Power is available (very important for this facility)
- Power Quality improvement? Difficult to determine thus far
- Payback Period is projected to be approximately 5 years (this value includes 50% co-funding provided by NYSERDA
- In general, the "hands-off" capability provided by the control system appears to be satisfied