## QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PLAN

## FOR

## WOODCREST LLC ANAEROBIC DIGESTER GAS (ADG) SYSTEM

Agreement # 43225

August 26, 2015

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

and

Woodcrest Dairy LLC 322 Wood Road Lisbon, NY 13658

Submitted by:

ARCADIS of New York Inc. 855 Route 146, Suite 210 Clifton Park, NY 12065

## **PROJECT PARTICIPANTS**

| NYSERDA Project Manager                                       | Stephen Hoyt<br>17 Columbia Circle<br>Albany, NY 12203-6399<br>518.862.1090 x 3587<br>Email: <u>Stephen.Hoyt@nyserda.ny.gov</u>                                             |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADG-to-Electricity Program Contractor (the: "ADG Contractor") | Woodcrest Dairy LLC<br>Contact: Peter Braun<br>322 Wood Rd.<br>Lisbon, NY 13658<br>(315) 323-0635<br>(315) 393-2047<br>Email: <u>braunseven@gmail.com</u>                   |
| ADG Contractor Site Contact                                   | Woodcrest Dairy LLC<br>Contact: Peter Braun<br>322 Wood Rd.<br>Lisbon, NY 13658<br>(315) 323-0635<br>(315) 393-2047<br>Email: braunseven@gmail.com                          |
| Digester System Vendor/Designer                               | RCM International LLC<br>Contact: Angela McEliece<br>PO Box 4716<br>Berkeley, CA 94704<br>(510) 834-4568<br>(510) 834-4529<br>Email: <u>amceliece@rcmdigesters.com</u>      |
| NYSERDA Technical Consultant (TC)                             | ARCADIS of New York Inc.<br>Contact: Silvia Marpicati<br>855 Route 146, Suite 210<br>Clifton Park, NY 12065<br>(518) 250-7328<br>Email: <u>silvia.marpicati@arcadis.com</u> |
| NYSERDA CHP Website Contractor<br>(CHP Website Contractor)    | CDH Energy Corp.<br>Contact: Hugh Henderson<br>P.O. Box 641<br>Cazenovia, NY 13035<br>(315) 655-1063<br>Email: hugh@cdhenergy.com                                           |

## Introduction

This plan describes the approach that will be used to monitor the performance of the anaerobic digester gas (ADG) system that is currently being installed at Woodcrest Dairy Farm (the farm) in Lisbon, NY, to produce biogas and electricity. Biogas will be used to fuel one engine-generator to produce power that will be consumed on site and/or exported back to the local utility. A monitoring system will be installed to measure and collect the data necessary to quantify the electric power produced and amount of biogas used by the engine-generator. The data will serve as the basis for payment of ten (10) years of performance incentive payments, which the farm has applied for under a Standard Performance Contract with NYSERDA based on a Total Contracted Capacity of 450 kW.

## **ADG System Description**

The digester system at the farm was designed by RCM International, LLC. The engine-generator equipment will be provided by Martin Machinery while the gas conditioning equipment will be supplied by RCM International, LLC. Gas and power metering are provided by Sage Metering Inc. and Electro Industries GaugeTech Inc. The site will operate one 450 kW synchronous engine-generator. Biogas will be channeled from the digester to a two-stage biochemical scrubber located near the digester. Gas conditioning equipment, piping and controls will be located next to the engine skid in the utility building. All the electrical loads at the farm are 3-phase, 277/480 volt electrical service which accommodates the interconnection of the generator system. The electrical system includes controls to synchronize the generator to the grid as well as a protective relay and controls to automatically isolate the units from the utility grid in the event of a utility power outage. The farm does expect to export a portion of the generated electricity, and has been approved for net metering.



Existing Heifer Facility.



East Lagoon.



Existing Manure Scrape System.

Figure 1 - Photos of Site and System Components



Proposed Anaerobic Digester Site.

| Digester              | RCM Anaerobic Digester, completely mixed,                                   |
|-----------------------|-----------------------------------------------------------------------------|
|                       | Insulated floating cover, heated, 1.5 million gallon capacity, 28 day       |
|                       | retention time                                                              |
| Feedstock             | Dairy Manure, approximately 1,500 animals (cows and heifers)                |
| Engine                | Dresser Rand SFGLD 360, 1,200 RPM,                                          |
|                       | 450 kW on biogas                                                            |
| Generator             | Marathon Electric MagnaMax <sup>DVR®</sup> Model MGG-712 – 480 VAC, 3       |
|                       | Phase.                                                                      |
| Biogas Conditioning   | RCM/MV two-stage biochemical H <sub>2</sub> S scrubber, de-watering system, |
|                       | and blower, rated for 130 scfm at 3,000 ppm.                                |
| Engine Backup/startup | Biogos Only for Engine Start up                                             |
| Fuel                  | Biogas Only for Engine Start-up                                             |
| Heat Recovery Use     | Digester and food waste tank heating                                        |

Table 1 - Biogas Systems at Woodcrest Farm

Figures 2 and 3 show the farm layout and general site plan. Cows are currently bedded with sawdust; however, the farm plans to change this practice in the future to use digested solids. Manure is currently collected with a manure scraping system from two dairy barns and the heifer barn three times per day. Raw manure and process water, including milking parlor waste, rainfall, and sprinkler water flow by gravity directly from the free-stall barns to an existing pump pit on the south side of the barn. The manure slurry is then pumped 600 feet to an existing manure lagoon.

#### Figure 2 – Site Plan 1 of 2



#### Figure 3 – Site Plan 2 of 2



6

Figure 4 shows the process flow diagram for the food waste tank. Manure in the lagoon is pumped to the influent tank where it is mixed with food waste. Food waste pretreatment includes a food waste tank, heat exchanger, chopper pump, and internal mixer. The food waste tank is sized for 18,000 gallons to hold 2 days of food waste. The digester is sized to receive one truck load of approximately 7,500 gallons of liquid food waste per day. The food waste can be whey, milk products, DAF sludge, or any pumpable waste. The digester design assumes all food waste will have a total solids content average of 10%. The feedstock is pumped from the influent tank to the digester.

Figure 5 shows the process diagram for the digester and engine system. The digester tank will be equipped with an insulated floating cover, submersed mechanical mixers and an internal heat exchanger. A series of six mechanical mixers with propellers will recirculate digester contents to keep the digester contents fully mixed. The internal heat exchanger will be supplied with hot water from the utility building.

Digester effluent will flow by gravity to an external effluent sump tank where a manure pump will pump effluent to a solid-liquid separator. Separated solids will be stored in the separator building and could be used as bedding and as soil amendment. A fraction of separated liquid will be recycled to the front of the dairy barns, separator overflow will be sent back to the effluent tank and the remaining portion will be conveyed to the effluent storage tank.

Gas generated will be collected in a floating cover. The floating cover will be allowed to float as biogas is produced to provide biogas storage. Gas generated will be passed through a two-stage RCM / MV biochemical scrubber system to remove excess hydrogen sulfide. The gas leaving the gas treatment system will have reduced hydrogen sulfide content and will be used as fuel in the cogen system. Biogas from the digester is either used in the engine-generator or flared. Excess gas will be released from the digester through a buried 8-inch PVC pipe that runs to the enclosed safety flare. The biogas flare will be actuated by the digester system PLC supplied by RCM if internal gas pressure reaches the upper threshold limit as indicated by the gas pressure meter. An additional mechanical emergency relief valve will vent biogas to maintain the digester static pressure requirements.

#### Figure 4 - Food Waste Process Diagram



#### **Figure 5 - Digester Process Diagram**



9

Sage metering devices will measure gas flow to the flare (FGF) and to the engine-generator (FG). A small amount of air will be injected directly into the digester head space to help reduce  $H_2S$  in the biogas prior to the scrubber system. To further reduce the biogas  $H_2S$  levels, biogas will pass through the scrubber system. This system is the combination of two biological scrubbers and a dry chemical scrubber with a bypass loop to achieve a blended output concentration of 400 ppm or less. The biological scrubber uses circulating liquid spray to absorb  $H_2S$  gas, and bacteria utilize the sulfur byproducts. Iron sponge media used inside the chemical scrubber reacts with  $H_2S$  and traps sulfur byproducts in the media. Once the gas is scrubbed it continues into the utility building where it is then de-watered and pressurized, via the gas conditioning equipment provided by RCM, before being combusted in the engine. Measurement of  $H_2S$  is not included in the QA/QC plan since the gas clean up performance incentive was not requested.

Heat is recovered from the engine exhaust in the form of hot water. This hot water is circulated through the heat exchanger where it provides heat to the digester contents, pumped by the recirculation pump. A similar system is used to heat the food waste receiving tank, with an internal heat exchanger where hot water from the utility building is circulated. Should the heat exchanger loop be unavailable, a radiator will be used to dissipate heat from the engine.

#### Figure 6 – One Line Electrical Diagram



## **ADG System Capacity Payment Descriptions**

This Section describes the Capacity Incentive Payments included in the Agreement, the payment milestones to be achieved in order to receive payment, and the deliverables to be provided in achieving these milestones.

<u>Capacity Payment #1</u>: Up to 15% of the Total Capacity Incentive.

<u>Payment Milestones:</u> Initial payments made for major equipment and other work, such as the engine generator system, the anaerobic digester system, the gas scrubbing equipment, and other major components and fees for system design, engineering, CESIR study and other "soft costs".

<u>Deliverables:</u> Documentation that initial payments have been made to suppliers or service providers for major project components.

**<u>Capacity Payment #2</u>**: Up to 45% of the Anaerobic Digester component of Total Capacity Incentive.

<u>Payment Milestones:</u> NYSERDA's designated technical consultant has verified that construction/installation/upgrade of the anaerobic digestion system has been completed.

<u>Deliverables:</u> (a) A QA/QC Plan approved by NYSERDA and (b) Site inspection and verification by the NYSERDA technical consultant that the installation is complete and operational in accordance with the approved QA/QC Plan. The digester can be considered complete and operational if the digester structures, piping, controls and equipment are all installed for the feeding mixing, heating and unloading of digester feedstocks and for gas treatment and flaring. The completed installation may be documented with (1) a listing of the digester structures, piping, controls and equipment for feeding, mixing, heating and unloading and gas treatment and flaring and other major equipment to be installed in the design and (2) provision of as-built drawings, photos, verification by on-site inspection by the NYSERDA technical consultant, and/or other means satisfactory to NYSERDA documenting that these have been installed and are ready to operate to produce and manage the design biogas power generation rate of approximately 10,968 scf/hr identified in the project Application Package to PON 2828 Appendix B Section B as a total of 96,076,259 scf/yr. (If the installed equipment deviates from that listed in the Application Package, an explanation of the deviation must be provided for determination by NYSERDA whether the installed equipment adequately meets the terms of the Agreement.)

**<u>Capacity Payment #3:</u>** Up to 45% of the Power Generation component of Total Capacity Incentive.

<u>Payment Milestones:</u> The Contractor has provided sufficient documentation to NYSERDA verifying that the power generation system has been delivered to the site (e.g., delivery receipt).

<u>Deliverables</u>: Delivery receipts, photos or other documentation acceptable to NYSERDA of delivery of the engine and generator equipment as described in the Agreement and adequate explanation of any deviations. (*If the installed equipment deviates from that listed in the* 

Application Package, an explanation of the deviation must be provided for determination by NYSERDA whether the installed equipment adequately meets the terms of the Agreement.)

**<u>Capacity Payment #4:</u>** Up to 45% of the Project Enhancement component of Total Capacity Incentive.

<u>Payment Milestones:</u> NYSERDA's designated technical consultant has verified that construction/installation of the Project Enhancement has been completed or the required documentation for the Project Enhancement, according to applicable sections of *Using the Incentive Calculation Tool* of Exhibit D has been submitted to NYSERDA. The Contractor may request payment at this time for any Project Enhancements that have been completed and verified. Payment for Project Enhancements completed and verified after the 4th Capacity payment request has been made may be requested with the 6th Capacity payment.

<u>Deliverables:</u> Documentation that the project enhancement for the system designed to accept greater than 20% food waste has been completed, including pretreatment equipment, all meeting the requirement of Enhancements Section 3 of the Using Incentive Calculation portion of Exhibit D.

**<u>Capacity Payment #5:</u>** Up to 20% of the Total Capacity Incentive.

<u>Payment Milestones:</u> Documentation has been provided to NYSERDA that sufficiently verifies successful operation of the newly installed system and completion of interconnection, if applicable (e.g., interconnection acceptance test documentation from the utility).

<u>Deliverables:</u> Documentation that (a) the interconnection acceptance test has been accepted by the utility and interconnection approval has been obtained from the utility and (b) the new power generation equipment is complete and operational in accordance with the approved QA/QC Plan. The New Power Generation Capacity can be considered complete and operational if it has produced electricity at a minimum average of 75% capacity factor or 337.5 kWh/h for at least one hour.

**<u>Capacity Payment # 6:</u>** Up to 100% of the Total Capacity Incentive.

<u>Payment Milestones:</u> The newly installed system is successfully commissioned. Commissioning includes operating the ADG - fueled energy generation system at a minimum of 75% average capacity factor over seven (7) consecutive days, and demonstrating the ability to upload data generated by the system to NYSERDA's CHP website, if applicable. Any Project Enhancements payments that were not made with the 4th Capacity payment may be requested with this payment.

<u>Deliverables:</u> A Project Commissioning Report documenting the completion of all elements of the Commissioning process required by the QA/QC Plan and successful uploading of data to the website that is adequately consistent to NYSERDA's satisfaction with the data recorded on site. The Project Commissioning Report shall consist of the compilation of information prepared in meeting the deliverables requirements for all payment milestones including:

- 1. Documentation that construction of the ADG-to Electricity System is complete;
- 2. Documentation that the System has been interconnected with the utility grid:
- 3. Documentation that the System's New Equipment has satisfactorily operated for at least seven consecutive days, which is defined as operation with an minimum average 75% Capacity Factor of the Total Contracted Capacity or 337.5 kWh/h;
- 4. Documentation that the System has demonstrated the ability to upload information to NYSERDA's CHP Data Integration Website in conformance with the following section of the QA/QC Plan: Monitoring System Equipment, Installation, Operation, and Maintenance;
- 5. As-Built Diagrams of the installed system, including an explanation of any deviation of the equipment from that listed in the Application Package. Diagrams may consist of electronic copies of as-built drawings.

## Monitoring System Equipment, Installation, Operation, and Maintenance

Figure 7 shows the general location of the meters used to measure biogas input to the enginegenerator (FG), biogas sent to the flare (FGF), and the generator electrical output (WG).



#### **Figure 7 - Location of Meters**

Information on these data points is shown in Table 2.

| Point<br>Type | Point<br>Name | Description               | Instrument                                                                   | Engineering<br>Units | Expected Range |
|---------------|---------------|---------------------------|------------------------------------------------------------------------------|----------------------|----------------|
| Modbus        | WG            | Engine-Generator<br>Power | Electro Industries GaugeTech Inc.<br>Revenue Grade Meter Model:<br>Shark 100 | kW                   | 0-999 kW       |
| Modbus        | FG            | Engine Biogas Flow        | Sage Metering Inc.<br>Model SIP-300-AC115-DIGGAS<br>(0-135 scfm)             | SCF                  | 0 – 8,100 SCFH |
| Modbus        | FGF           | Flare Biogas Flow         | Sage Metering Inc.<br>Model SRP-050-AC115-DIGGAS<br>(0-135 scfm)             | SCF                  | 0 – 8,100 SCFH |

Table 2 - Monitored Points for ADG System

The electrical output of the engine-generator (WG) will be measured with the Electro Industries GaugeTech Inc. Shark 100 Pulse Output power meter. The power meter will be installed in a stand-alone cabinet on the side of the engine by the electrical contractor. The power meter will be installed according to the requirements in the appropriate operator guide. The CT inputs to the power meter will be fused in order to protect the power meter.

The biogas input to the engine will be measured by a Sage Prime mass flow meter (**FG**). The meter is capable of providing a temperature compensated pulse output, 4-20 mA output, or Modbus 485 output. There is a second Sage Prime mass flow meter (**FGF**) that meters the gas flow to the flare. The meters will be installed and maintained according to the "Sage Thermal Gas Mass Flow Meter Operations and Instruction Manual for Models SIP/SRP," by the facility. A log of maintenance activities for the meters will be maintained at the site.

The gas meter can measure a wide range of mass flow, however it will be calibrated to measure the expected biogas generated. Currently the system is expected to produce up to 135 scfm and the meter will be spanned to measure 0 - 135 scfm. If the actual gas flow varies significantly the meters will need to be re-spanned, this can be done on site, without removing the meters, with the purchase of a communications kit and software from Sage.

The lower heating value for the biogas is estimated to be 600 Btu/ft<sup>3</sup>, based on past measurements of the  $CO_2$  content of biogas. This value will be verified weekly based on measurements of carbon dioxide using a Bacharach Fyrite  $CO_2$  detector for a range of 0-60%. The farm staff will perform the  $CO_2$  tests and log the results in the project log. This test is performed by taking a gas sample from the low pressure gas supply before it enters the engine generator equipment. The sampling point is marked in Figure 7 as "CO<sub>2</sub> Sampling".

Data logging is going to be done in one of two ways:

- 1) The control panels being provided may have the capabilities to perform the necessary data logging. This includes receiving signals from the power meter and two gas meters (one Modbus 485 signal, and two pulse or 4-20mA or Modbus 485) and logging time stamped data at 15 minute intervals. The data would then need to be made available to CDH Energy, the NYSERDA CHP Website Contractor, in a number of ways:
  - A nightly automated email to data\_collection@cdhenergy.
  - A nightly automated upload to CDH's FTP server.
  - If a static IP address can be provided, and the data made available online, CDH could set up automated processes to pull data on a nightly basis.
- 2) If the control panels do not have the capabilities required, CDH will provide an Obvius AcquiSuite data logger and panel. CDH will then terminate sensor wiring to the logger, and verify that accurate measurements are being received. The facility will be responsible to provide CDH with 110 V power, and either an internet or phone connection. The data logger will be connected to an uninterruptible power supply (UPS) to ensure the data logger retains its settings and data in the event of a power outage. The

Farm will provide a static IP address that will be used by CDH Energy to communicate with the data logger.

### Management of Monitoring System Data

The farm will perform the following quality assurance and quality control measures to ensure the data produced from our system accurately describes system performance.

On a daily basis, the farm equipment manager will perform inspections of the digester and engine-generator equipment and record findings into the project log.

On a weekly basis, the farm equipment manager will perform inspections of the QA/QC meter installations and complete the routine maintenance on the meters, noting any abnormalities or unexpected readings. The farm will also maintain a weekly log of the cumulative power generation (kWh) from the power meter (WG) and gas flow (cf or  $ft^3$ ) recorded by the Sage meters (FG, FGF) in the event that data transfer to the NYSERDA CHP Website fails or other anomalies occur.

On a weekly basis, the farm staff will review the data stored in the NYSERDA CHP Website (chp.nyserda.ny.gov) to ensure it is consistent with our observed performance of the ADG system and logged readings. The farm will review the data on the website, including:

• Monitored Data – Download (CSV file)

In addition, the farm staff will also use the Monitored Data – Download (CSV file) that is available at the CHP Website to help track the system performance, including:

• an email report sent out if data is not received at the web site or does not pass the quality checks.

The website will automatically take the data collected from the data-logger and evaluate the quality of the data for each base time interval using range and relational checks. The range checks will be setup based on the expected ranges for the sensors (see Table 2).

The relational check will compare the kWh production data and gas production data for each base time interval to ensure that both meters are reading properly. This check is to ensure that both meters are operating properly; power cannot be produced without gas, and gas cannot be combusted by the engine without producing power.

Data that passes the range and relational quality checks will be used to compile the production amounts used for the incentive calculations. However, all hourly data is available from the NYSERDA CHP Website if the data quality flag of "Data Exists" is selected. In the event of a communications or meter failure, the farm will work with CDH Energy to resolve the issue in a few days. If unanticipated loss of data occurs when the engine-generator continues to produce electricity, the farm intends to follow the procedures outlined in Exhibit D, of their contract, i.e. use data from similar periods – either just before or after the outage - to replace the lost data. The farm understands that they can use this approach for up to two 36 hour periods within each 12-month performance period. If more than two such data outages occur, the farm will provide information from other acceptable data sources (e.g., weekly recorded logs) to definitively determine the amount of power that was being produced from biogas during the period in question.

### **Annual Performance Reports**

The farm will prepare Annual Performance Reports summarizing the monthly data over the 12month performance period. The reports will include a table (example provided below) showing the monthly kWh production, biogas use by the engine, and other data listed in Table 3, and if used, any propane or other fuel used for the engine/boiler. The Farm may use the data found on the CHP Website or alternatively, they may provide their own summary of the data using on-site sources along with a narrative justifying why their data and calculations are more appropriate. The methods for calculating these values are provided below.

#### Table 3 - Summary of Monthly Data for Annual Performance Reports

| Start Date of | Number of | Electricity      | Biogas Used by | Biogas Used  | LHV <sub>biogas</sub> | Biogas                    |
|---------------|-----------|------------------|----------------|--------------|-----------------------|---------------------------|
| Reporting     | Days in   | Production       | Engine         | by Flare     | Ū                     | Energy                    |
| Domind        | Each      | 1-W/h            | (aubia faat)   | (oubic feet) | (Btu/cf)              | Contont                   |
| renou         | Each      | K VV IIgenerator | (cubic feet)   | (cubic feet) |                       | Content,                  |
|               | Period    |                  |                |              |                       | Q <sub>biogas</sub> (BTU) |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
|               |           |                  |                |              |                       |                           |
| TOTALS        |           |                  |                |              |                       |                           |

The farm will calculate monthly values for lower heating value of the biogas (LHV<sub>biogas</sub>) and total energy content of the biogas ( $Q_{biogas}$ ) as follows.

#### **Monthly Biogas Lower Heating Value**

The readings of CO<sub>2</sub> concentration in the biogas gathered weekly will be used to estimate the average monthly Biogas Lower Heating Value using the following equation:

$$LHV_{biogas} = LHV_{methane} \cdot (F_{CH4})$$

where:

LHV<sub>methane</sub> - lower heating value of methane (911 Btu/ft<sup>3</sup> at standard conditions, 60 °F and 1 atm)

 $F_{CH4}$  - fraction of biogas that is  $CH_4$  (average of readings for each month)

### **Monthly Biogas Energy Content**

Calculate the average monthly Biogas Energy Content using the following equation:

 $Q_{biogas} = CF \cdot LHV_{biogas}$ 

where:

CF - volume (cubic feet or  $ft^3$ ) of biogas in month

#### Reasonable Electrical Efficiency

The Annual Performance Report will also provide a comparison of power output and fuel input for the engine to confirm their reasonableness. For instance, the electrical efficiency – measured as power output (kWh<sub>generator</sub>) divided by the energy content of the fuel input ( $Q_{biogas}$ ) in similar units and based on lower heating value – should be in the 31% to 38% range over any interval for the engine-generator at Woodcrest Farm.

## Appendices

#### **Cut sheets and Manuals for:**

Dresser-Rand Guascor, SGFLD 360, 1,200 RPM Engine

Marathon Electric MagnaMax<sup>DVR®</sup> Model MGG-712, 450 kW Generator

Sage Metering Inc., Model SIP-300-AC115-DIGGAS Mass Flow Meter

Sage Metering Inc., Model SRP-050-AC115-DIGGAS Mass Flow Meter

Electro Industries Gauge Tech Inc., Model Shark 100, Revenue Grade Meter

Bacharach Inc., Model 10-5032, Fyrite Gas Analyzers

| GROUP         | PRODUCT INFORMATIO | N            | INDEX        |            |            |
|---------------|--------------------|--------------|--------------|------------|------------|
| DRESSER-RAND. | IC                 | GAS          | IC-G-B-36-15 | 6          | A1         |
|               |                    | POWER RATING |              | DA<br>26/0 | TE<br>8/14 |
|               |                    |              | DEP.         | 2          |            |

| GENSET:                       | S    | SFGLD 3 | 60           | SPEED:                   |                                   | 1200       |  |
|-------------------------------|------|---------|--------------|--------------------------|-----------------------------------|------------|--|
| JACKET WATER TEMPERATURE(°F): |      |         | 194          |                          | 6514/4                            |            |  |
| INTERCOOLER WATER TEMP(°F):   |      |         | 131          | FUEL TYPE:               | SEVVA                             |            |  |
| -                             |      |         |              |                          |                                   |            |  |
| APPLICATION:                  |      |         | CONTINUOUS   | COMPRESSION RATIO:       |                                   | 11,6:1     |  |
| COOLING SYSTEM:               |      |         | TWO CIRCUITS | REGULATION:              |                                   | Electronic |  |
|                               |      |         | TWO STAGE IC | IGNITION TIMING:         |                                   | 18º        |  |
| EXHAUST MANIFOLD TYPE:        |      |         | WATER COOLED | MAX. BACK PRESSURE:      | 18 "H2O (45                       | 60 mmH2O)  |  |
| EMISSIONS:                    |      |         |              |                          |                                   |            |  |
|                               | NOX  | g/bHPh  | 1            | AMBIENT CONDITIONS ISO 3 | 046/1:                            |            |  |
|                               | со   | g/bHPh  | <1,8         |                          | Atmospheric pressure ("Hg (kPa))= | 30 (100)   |  |
|                               | NMHC | g/bHPh  | <0,7         |                          | Ambient temperature (°F (°C))=    | 77 (25)    |  |

| POWER RATING (4)                     |           |                 | NOMINAL     |             | PARTIAL LOADS |             |
|--------------------------------------|-----------|-----------------|-------------|-------------|---------------|-------------|
| LOAD                                 |           | %               | 100%        | 80%         | 60%           | 40%         |
| MECHANICAL POWER                     | (3, 4, 5) | BHP (KWb)       | 675 (503)   | 539 (402)   | 405 (302)     | 270 (201)   |
| BMEP                                 |           | psi (bar)       | 203 (14.0)  | 162 (11.2)  | 122 (8.4)     | 81 (5.6)    |
| ELECTRICAL POWER (cos $\phi$ 1)      |           | kWe             | 483         | 386         | 289           | 190         |
| ELECTRICAL POWER (cos $\phi$ 0,8)    |           | kWe             | 475         | 381         | 285           | 188         |
| FUEL CONSUMPTION                     | (1)       | BTU/bHP-hr (KW) | 6400 (1266) | 6559 (1036) | 6909 (820)    | 7545 (597)  |
| MECHANICAL EFFICIENCY                |           | %               | 39.7        | 38.8        | 36.8          | 33.7        |
| ELECTRICAL EFFICIENCY (cosφ 1)       |           | %               | 38.2        | 37.3        | 35.2          | 31.8        |
| HEAT IN MAIN WATER CIRCUIT           | (1)       | BTU/min (KW)    | 21270 (374) | 17170 (302) | 13650 (240)   | 10690 (188) |
| HEAT IN SECONDARY WATER CIRCUIT      | (1)       | BTU/min (KW)    | 5346 (94)   | 4777 (84)   | 4436 (78)     | 3640 (64)   |
| HEAT IN CHARGE COOLER                | (1)       | BTU/min (KW)    | 1649 (29)   | 1365 (24)   | 1194 (21)     | 626 (11)    |
| HEAT IN OIL COOLER                   | (1)       | BTU/min (KW)    | 3696 (65)   | 3412 (60)   | 3242 (57)     | 3014 (53)   |
| HEAT IN EXHAUST GASES (25 ºC)        | (1)       | BTU/min (KW)    | 15750 (277) | 13190 (232) | 10580 (186)   | 7510 (132)  |
| HEAT IN EXHAUST GASES (120ºC)        | (1)       | BTU/min (KW)    | 11110 (195) | 9470 (166)  | 7620 (134)    | 5460 (96)   |
| EXHAUST GAS TEMPERATURE              | (1)       | °F (°C)         | 658 (348)   | 680 (360)   | 693 (367)     | 702 (372)   |
| HEAT TO RADIATION                    | (1)       | BTU/min (KW)    | 1024 (18)   | 910 (16)    | 796 (14)      | 682 (12)    |
| CARBURETION SETTINGS (2)             |           |                 |             |             |               |             |
|                                      |           | 0/              |             | 0.1         | 7.0           | 7.5         |
| UZ TU EXHAUST(DKY)(UNLY A KEFEKENCE) |           | %               | 8.3         | 8.1         | 7.9           | 7.5         |
|                                      |           |                 | r           |             |               |             |
| MASS FLOWS                           |           |                 |             |             |               |             |
|                                      |           |                 |             |             |               |             |

| INTAKE AIR FLOW        | (1) | lb/h (Kg/h) | 5400 (2450) | 4360 (198 | 0) 3410 | (1540) | 2380 | (1080) |
|------------------------|-----|-------------|-------------|-----------|---------|--------|------|--------|
| EXHAUST GAS FLOW (WET) | (1) | lb/h (Kg/h) | 5910 (2680) | 4780 (217 | 0) 3740 | (1700) | 2630 | (1190) |
|                        |     |             |             |           |         |        |      |        |

#### NOTES:

1. 100% LOAD TOLERANCES:

FUEL CONSUMPTION +5%,

COOLING CIRCUIT AND EXHAUST GASES ± 8%, RADIATION ±25%

EXHAUST TEMPERATURE ±36°F (20°C), MASS FLOWS ± 10%.

2. THE ENGINE PERFORMANCE DATA, TIMING ADVANCE AND CARBURETION SETTINGS ARE VALID FOR A GAS

2/18/2015 Cod.: C-A

THAT FULFILS THE REQUIREMENTS DEFINED IN IC-G-D-30-001 AND IC-G-D-30-003e. HEAT BALANCE FOR A REFERENCE GAS: CH4 62.5%, CO2 36%, N2 1,5% 3. NET POWER, MECHANICAL PUMPS NOT INCLUDED.

4. POWERS ARE VALID FOR AMBIENT TEMP.=77 ºF (25 ºC) AND AN ALTITUDE OF =1640 ft (500 m). SEE OTHER CONDITIONS IN PI IC-G-B-00-001

5. OVERLOAD NOT ALLOWED

6. THE SPECIFICATIONS AND MATERIALS ARE SUBJECT TO CHANGE WITHOUT NOTIFICATION

7. A ENGINE WITH INLET OR OUTPUT RESTRICTION OVER PUBLISHED LIMITS, OR WITH INADEQUATE MAINTENANCE OR INSTALLATION

CAN MODIFY POWER RATING DATA.

8. EMISSIONS

CODE3

9. ALTERNATOR VOLTAGE 440 V

Versión: 28/26/08/2014

cli35

Relative humidity (%)=

30



## **ELECTRICAL EQUIPMENT SUBMITTAL**

May 29, 2015

## WE ARE PLEASED TO SUBMIT THE FOLLOWING FOR YOUR HONORED APPROVAL

## Oty. 1 560 Kw\* Generator System

For interconnection to utility with a Beckwith M3410A protective relay

To be installed for:

Woodcrest Farm Ogdensburg, NY

\*Max total output limit is 450 kW. See Generator rating



## **Project Contact Information:**





Woodcrest Submittal

## Sections Index

- I. Generator
- II. Paralleling Breaker
- III. Intertie Protection Relay
- IV. Potential and Current Transformers
- V. Digital Genset Controller
- VI. Control Panel and Breaker Panel
- VII. Description of Operation
- VIII. Energization Plan
- IX. Test Procedures
- X. System Electrical Schematic Diagrams



Woodcrest Submittal

# Section I

Generator



# MAGNAMAX<sup>DVR®</sup> novation Performance Relia



Since its market introduction, Marathon Electric's **MAGNAMAX**<sup>DVR®</sup> has been a technology leader and proven performer. The **MAGNAMAX**<sup>DVR®</sup> generator line offers as standard a permanent magnet generator excitation system, exceptional transient performance and strong motor starting capability, and utilizes the industry's first digital voltage regulator.

Each **MAGNAMAX**<sup>DVR®</sup> features the exclusive DVR2000E digital voltage regulator providing .25% regulation and three phase RMS sensing.

These outstanding features make **MAGNAMAX** <sup>DVR®</sup> the ideal generator for voltage critical applications such as:

Telecomm Networks

Hospitals

Airports

- 0......
  - Computer Centers

Commercial Buildings

Distributed Power

#### Unirotor Construction

Single Piece Rotor Laminations
 Aluminum Die Cast Rotor Core





#### **DVR2000E**

- Patented PMG Powered
- Digital Voltage Regulator

MARATHON ELECTRIC



- Supporting non-linear loads (UPS systems and variable frequency drives)
- Providing unprecedented voltage regulation in the presence of harmonic distortion caused by non-linear loads
- Easy access and serviceability
- Providing low reactance design which minimizes the harmonic voltage distortion caused by non-linear loads
- Constructed for extended life
- Reliable performance





430 - 570 - 740 Frame

## **Dimensions** in inches and (millimeters)

MAGNAMAX

ALL DIMENSIONS ARE APPROXIMATE: Contact factory for full dimensional data

| Frame<br>Size | A     | В      | BA    | С      | D     | E     | 2F    | Н     | Р     | x      | Y     | MAX Net Wgt.<br>Ibs.<br>(kg) |
|---------------|-------|--------|-------|--------|-------|-------|-------|-------|-------|--------|-------|------------------------------|
| 404           | 21.00 | 10.00  | 10.00 | 38.40  | 22.64 | 9.00  | 6.00  | 13.00 | 26.51 | 39.77  | 15.21 | 1370                         |
| 431           | (533) | (254)  | (254) | (975)  | (575) | (229) | (152) | (330) | (673) | (1010) | (386) | (623)                        |
| 422           | 21.00 | 10.00  | 10.00 | 43.40  | 22.64 | 9.00  | 6.00  | 13.00 | 26.51 | 39.77  | 15.21 | 1830                         |
| 432           | (533) | (254)  | (254) | (1102) | (575) | (229) | (152) | (330) | (673) | (1010) | (386) | (832)                        |
| 433           | 21.00 | 10.00  | 10.00 | 49.40  | 22.64 | 9.00  | 11.00 | 13.00 | 26.51 | 39.77  | 15.21 | 2365                         |
| 400           | (533) | (254)  | (254) | (1255) | (575) | (229) | (279) | (330) | (673) | (1010) | (386) | (1075)                       |
| 572           | 22.50 | 15.00  | 11.50 | 51.52  | 27.64 | 10.00 | 11.00 | 15.50 | 30.77 | 42.64  | 17.21 | 3110                         |
| 572           | (572) | (381)  | (292) | (1308) | (702) | (254) | (279) | (394) | (782) | (1083) | (437) | (1411)                       |
| 573           | 22.50 | 24.00  | 11.50 | 58.02  | 27.64 | 10.00 | 20.00 | 15.50 | 30.77 | 42.64  | 17.21 | 3620                         |
|               | (572) | (610)  | (292) | (1474) | (702) | (254) | (508) | (394) | (782) | (1083) | (437) | (1642)                       |
| 574           | 22.50 | 24.00  | 11.50 | 65.02  | 27.64 | 10.00 | 20.00 | 15.50 | 30.77 | 42.64  | 17.21 | 4240                         |
|               | (533) | (610)  | (292) | (1651) | (702) | (254) | (508) | (394) | (782) | (1083) | (437) | (1923)                       |
| 575           | 22.50 | 24.00  | 11.50 | 69.27  | 27.64 | 10.00 | 20.00 | 15.50 | 30.77 | 42.64  | 19.21 | 5000                         |
| 575           | (533) | (610)  | (292) | (1759) | (702) | (254) | (508) | (394) | (782) | (1083) | (488) | (2268)                       |
| 740           | 33.00 | 27.00  | 12.00 | 71.37  | 27.64 | 15.00 | 23.00 | 19.00 | 30.77 | 51.45  | 19.21 | 5200                         |
| 740           | (838) | (686)  | (305) | (1813) | (702) | (381) | (584) | (483) | (782) | (1307) | (488) | (2359)                       |
| 741           | 33.00 | 27.00  | 12.00 | 65.81  | 34.24 | 15.00 | 23.00 | 19.00 | 38.02 | 51.45  | 21.24 | 5490                         |
|               | (838) | (686)  | (305) | (1672) | (870) | (381) | (584) | (483) | (966) | (1307) | (539) | (2490)                       |
| 742           | 33.00 | 27.00  | 12.00 | 72.81  | 34.24 | 15.00 | 23.00 | 19.00 | 38.02 | 51.45  | 21.24 | 6300                         |
| / 42          | (838) | (686)  | (305) | (1849) | (870) | (381) | (584) | (483) | (966) | (1307) | (539) | (2858)                       |
| 743           | 33.00 | 41.00  | 12.00 | 79.31  | 34.24 | 15.00 | 37.00 | 19.00 | 38.02 | 51.45  | 21.24 | 7800                         |
| 145           | (838) | (1041) | (305) | (2014) | (870) | (381) | (940) | (483) | (966) | (1307) | (539) | (3538)                       |
| 744           | 33.00 | 41.00  | 12.00 | 85.81  | 34.24 | 15.00 | 37.00 | 19.00 | 38.02 | 51.45  | 21.24 | 9740                         |
| / 44          | (838) | (1041) | (305) | (2180) | (870) | (381) | (940) | (483) | (966) | (1307) | (539) | (4418)                       |

Note: Connection boxes shown are furnished as standard product. Consult factory for optional connection boxes.



Your Independent Power Source for the 21<sup>st</sup> Century!

P.O. Box 8003 Wausau, WI 54402-8003 USA

www.marathonelectric.com

Phone: 715-675-3359 Fax: 715-675-8026

SB370 6029J/2k/11-07/SK/TP







KW - PER UNIT OF RATED KVA



**Document Name:** 

## Martin Energy Group Generator Rating Guide

April 30, 2013

Revised January 8, 2015 (Martin Energy Group)

Explanation of Manufacturer and OEM performance ratings on Martin Energy Group Generator <u>Sets</u>.\*

\*The Woodcrest Farm Generator <u>Set</u> is rated at <u>450 kW</u> by Martin Energy Group.





## Explanation of applicable ratings:

Martin Electric Power Generators, designed and assembled at Latham Mo. or at Ephrata PA. are conservatively rated which is a key to the reliable operation and longevity of these machines.

As an OEM (Original Equipment Manufacturer) Martin Energy Group purchases Engines (Prime Movers) and Generator Ends (Electrical Windings) from a variety of manufacturers to design complete units (Generator Sets) that best meet the needs of a customer's application. Because the Prime Movers are manufactured, tested, and rated by one entity and the Electrical Windings by another unrelated entity, it is rare that the HP rating of the Prime Mover and the kW (or kVA) rating of the Electrical Winding will be perfectly matched. This necessitates that the manufacturer's rating of the Prime Mover, and the manufacturers rating of the Electrical Winding must both be considered when Martin Energy Group assigns an OEM output rating to the completed Generator Set.

Another factor that must be considered for an effective solution is the efficiency curves of both the Prime Mover and the Electrical Winding. Because peak efficiency is usually not at the maximum rating, equipment will be chosen, and the Generator <u>Set</u> rated, so that in normal operation the Generator <u>Set</u> will be operating as near the peak efficiency point as is possible.

Because Martin Energy Group Generator <u>Sets</u> are also often used for heat recovery purposes, the heat rejection curves of the Prime Mover must also be considered in the optimum rating of the Generator <u>Set</u>.

Many of the Generator <u>Sets</u> assembled by Martin Energy Group are interconnected to the electric grid. This is an additional engineering consideration because in most cases there will be some load imbalance on a typical 3ø utility distribution circuit. This imbalance causes negative sequence current in the generator windings and the result is additional heat generated in the windings of an interconnected generator at lower output than if all loads would be perfectly balanced, and is significant potential for catastrophic component failure. Because of this, all interconnected Generator <u>Sets</u> are rated lower by Martin Energy Group, than would be the typical continuous output rating for the Electrical Windings from the Manufacturer.

Finally, Martin Energy Group assigns a maximum kW and kVA rating to the Generator <u>Set</u>, based on consideration of all of the points above. This rating is a key point of the contractual sales agreement between Martin Energy Group and the Customer. The Customer is purchasing this level of output, at the stated level of efficiency for the investment agreed upon between Martin Energy Group and the Customer.

Martin Energy Group warranty support is contingent upon not exceeding the Martin Energy Group assigned rating. Exceeding this rating will immediately void all warranty.

The Martin Energy Group assigned rating is programmed into the Generator <u>Set</u> controls, (Intelisys NT Digital Paralleling Gen<u>set</u> Controller) under factory level password. The Intelisys NT controller is the machine level controller which determines the operating parameters of the Generator <u>Set</u> based on its programmed parameters, so that the machine cannot be driven to higher levels of output. The intelisys NT has up to 7 user levels which allows Martin Energy Group to classify and restrict the access levels accordingly. The setting environment is illustrated below.



Excerpt from the Intelisys NT manual:

## Setpoints Password protection

Any setpoint can be password protected - 7 levels of protection are available. There can be up to 8 users defined, each one with different access rights (levels of protection). Every user has it's own password. The password is a four-digit number. Only setpoints protected by the protection level that is covered by currently logged-in user's access rights can be modified.

Because the controller determines the output ramp +/- of the Generator <u>Set</u> the Nominal kW parameter is the top limit of the output ramp. This parameter is set at the factory to the output rating that was sold to the customer and is protected by the factory level password. Only trained factory personnel have access to the factory level parameters.

Excerpt from the Intelisys NT manual: (Highlight is added)

## Basic settings Nomin power [ kW – MW\* ] (FV)

Nominal power of the generator. Step: 0,1 kW / 1 kW / 0,01 MW\* Range: 0,1 kW – 320,00 MW\*

\*Note:

The actual setpoint units and range depend on setting of the Power format (see GenConfig manual). Nominal power of the gen-<u>set</u> is also its maximum operation power.

## Summary for application of the ratings of Martin Generator Sets:

For accurate system performance data:

- Use Prime Mover manufacturer's bHP rating, efficiency data, and heat rejection data, in combination with the Martin Generator <u>Set</u> rating for fuel consumption and heat generation studies.
- Use the Generator Winding manufacturers' reactance data sheets for instantaneous and short duration fault studies where momentum of rotating mass (WR<sup>2</sup> Inertia) can, in most cases, produce the absolute maximum capability of the Generator Winding for a short duration.
- Use the Martin Generator <u>Set</u> rating to model the actual, steady state affect of the Generator <u>Set</u>, operating in normal conditions, interconnected to an electrical distribution circuit.



Woodcrest Submittal

# Section II

Paralleling Breaker





## **Emax power breakers**



ABB's Emax series of low voltage power circuit breakers embodies over half a century's experience and technological development in power circuit breakers. The Emax offers a series of breakers that is totally innovative in its technological design, ease of installation and use, making it the ideal solution for the growing requirements of designers, switchboard and switchgear manufacturers, installers, OEMs and users.

The Emax power circuit breakers are UL Listed and meet the ANSI and IEC Standards for low voltage power circuit breakers.

ABB Emax power circuit breakers are available in five different models with rated continuous current from 800A to 6300A and rated short-circuit current range from 42kA to 200kA (480V).

Technical catalog 1SDC200005D0201 is available upon request.

XEL



## General information

## General ratings and specifications





----



|                                                          |       | E    | <mark>1</mark>  | EZ   |      | E3   |      |      |      |         |      |      |
|----------------------------------------------------------|-------|------|-----------------|------|------|------|------|------|------|---------|------|------|
| UL 1066                                                  |       | E    | 1               |      | E    | 2    |      |      |      | E3      |      |      |
| Levels of performance                                    |       | B-A  | N-A             | B-A  | N-A  | S-A  | H-A  | N-A  | S-A  | H-A     | V-A  |      |
| Frame Size                                               | [A]   | 800  | 800             | 1600 | 800  | 800  | 800  | 2000 | 800  | 800     | 800  |      |
|                                                          | [A]   | 1200 | 1200            | _    | 1200 | 1200 | 1200 | 2500 | 1200 | 1200    | 1200 |      |
|                                                          | [A]   | _    | _               | _    | 1600 | 1600 | 1600 | _    | 1600 | 1600    | 1600 |      |
|                                                          | [A]   | _    | _               | _    | —    | _    | _    | _    | 2000 | 2000    | 2000 |      |
|                                                          | [A]   | _    | _               | _    | —    | _    | _    | _    | 2500 | 2500    | 2500 |      |
|                                                          | [A]   | _    | _               | _    | —    | _    | _    | _    | 3200 | 3200    | 3200 |      |
| Capacity of neutral pole for four-pole circuit breakers  | [%lu] | 100  | 100             | 100  | 100  | 100  | 100  | 100  | 100  | 100     | 100  |      |
| Rated short circuit current                              |       |      |                 |      |      |      |      |      |      |         |      |      |
| 240V                                                     | [kA]  | 42   | 50              | 42   | 65   | 65   | 85   | 65   | 85   | 85      | 125  |      |
| 480V                                                     | [kA]  | 42   | <mark>50</mark> | 42   | 50   | 65   | 85   | 50   | 65   | 85      | 125  |      |
| 600V                                                     | [kA]  | 42   | 50              | 42   | 50   | 65   | 65   | 50   | 65   | 85      | 100  |      |
| Rated short time current                                 | [kA]  | 42   | 50              | 42   | 50   | 65   | 65   | 50   | 65   | 65      | 85   |      |
| IEC 60947-2                                              |       |      |                 |      |      |      |      |      |      |         |      |      |
| Levels of performance                                    |       | в    | Ν               | В    | Ν    | S    | L    | N    | S    | н       | V    | L    |
| Currents: rated uninterrupted current (at 40°C) lu       | [A]   | 800  | 800             | 1600 | 1000 | 800  | 1250 | 2500 | 1000 | 800     | 800  | 2000 |
|                                                          | [A]   | 1000 | 1000            | 2000 | 1250 | 1000 | 1600 | 3200 | 1250 | 1000    | 1250 | 2500 |
|                                                          | [A]   | 1250 | 1250            | _    | 1600 | 1250 | —    | _    | 1600 | 1250    | 1600 | _    |
|                                                          | [A]   | 1600 | 1600            | _    | 2000 | 1600 | —    | _    | 2000 | 1600    | 2000 | _    |
|                                                          | [A]   | _    | _               | _    | _    | 2000 | _    | _    | 2500 | 2000    | 2500 | _    |
|                                                          | [A]   | _    | _               | _    | —    | _    | —    | _    | 3200 | 2500    | 3200 | _    |
|                                                          | [A]   | _    | _               | _    | _    | _    | _    | _    | _    | 3200    | _    | _    |
| Capacity of neutral pole for four-pole circuit breakers  | [%lu] | 100  | 100             | 100  | 100  | 100  | 100  | 100  | 100  | 100     | 100  | 100  |
| Rated ultimate breaking capacity under short circuit Icu |       |      |                 |      |      |      |      |      |      |         |      |      |
| 220/230/380/400/415V                                     | [kA]  | 42   | 50              | 42   | 65   | 85   | 130  | 65   | 75   | 100     | 130  | 130  |
| 440V                                                     | [kA]  | 42   | 50              | 42   | 65   | 85   | 110  | 65   | 75   | 100     | 130  | 110  |
| 500/525V                                                 | [kA]  | 42   | 50              | 42   | 55   | 65   | 85   | 65   | 75   | 100     | 100  | 85   |
| 660/690V                                                 | [kA]  | 42   | 50              | 42   | 55   | 65   | 85   | 65   | 75   | 85      | 100  | 85   |
| Rated service breaking capacity under short circuit Ics  |       |      |                 |      |      |      |      |      |      |         |      |      |
| 220/230/380/400/415V                                     | [kA]  | 42   | 50              | 42   | 65   | 85   | 130  | 65   | 75   | 85      | 100  | 130  |
| 440V                                                     | [kA]  | 42   | 50              | 42   | 65   | 85   | 110  | 65   | 75   | 85      | 100  | 110  |
| 500/525V                                                 | [kA]  | 42   | 50              | 42   | 55   | 65   | 65   | 65   | 75   | 85      | 85   | 65   |
| 660/690V                                                 | [kA]  | 42   | 50              | 42   | 55   | 65   | 65   | 65   | 75   | 85      | 85   | 65   |
| Rated short time withstand current Icw (1s)              | [kA]  | 42   | 50              | 42   | 55   | 65   | 10   | 65   | 75   | 75      | 85   | 15   |
| UL 1066 and IEC 60947-2                                  |       |      |                 |      |      |      |      |      |      |         |      |      |
| Overall dimensions                                       |       |      |                 |      |      |      |      |      |      |         |      |      |
| Fixed: H = 418mm/16.46 in; D = 302 mm/11.89 in           |       |      |                 |      |      |      |      |      |      |         |      |      |
| W (3 poles/4 poles)                                      | [mm]  | 296/ | /386            |      | 296  | /386 |      |      |      | 404/530 |      |      |
|                                                          |       |      |                 |      |      |      |      | 1    |      |         | -    |      |

| W (3 poles/4 poles)                                  | [mm]                | 296/386          | 296/386    | 404/530     |
|------------------------------------------------------|---------------------|------------------|------------|-------------|
| W (3 poles/4 poles)                                  | [in]                | 11.65/15.2       | 11.65/15.2 | 15.91/20.82 |
| Draw out: H = 461mm/18.15 in; D = 396.5 mm/15.6      | 61 in               |                  |            |             |
| W (3 poles/4 poles)                                  | [mm]                | 324/414          | 324/414    | 432/558     |
| W (3 poles/4 poles)                                  | [in]                | 12.76/16.3       | 12.76/16.3 | 17.01/21.97 |
| Weights (circuit breaker complete with trip unit, RH | terminals, CS, excl | uding accessorie | es)        |             |
| Fixed                                                |                     |                  |            |             |
| 3 poles/4 poles                                      | [Kg]                | 45/54            | 50/61      | 66/80       |
| 3 poles/4 poles                                      | [lbs]               | 99/119           | 110/134    | 145/176     |
| Draw out                                             |                     |                  |            |             |
| 3 poles/4 poles                                      | [Kg]                | 70/82            | 78/93      | 104/125     |
| 3 poles/4 poles                                      | [lbs]               | 154/181          | 172/205    | 229/275     |

 $(\widehat{})$  four poles only  $(\widehat{})$  100% neutral protection

16

## **Circuit breakers in accordance with** IEC 6097-2



|                                                               |                                                                                       |                                                | E                                        | E2                                       |                                   |                                           | E3                                     |                              |                             |                                                       |                                                             |                                                      |                              |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------|-------------------------------------------|----------------------------------------|------------------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------|
| Automatic circuit-breakers                                    |                                                                                       |                                                | E1B                                      | E1N                                      | E2B                               | E2N                                       | E2S                                    | E2L                          | E3N                         | E3S                                                   | E3H                                                         | E3V                                                  | E3L                          |
| Poles<br>4p cb r<br>lu                                        | neutral current-carring capacity<br>(40 °C)                                           | [No.]<br>[%lu]<br>[A]                          | 3 -<br>10<br>800<br>1000<br>1250<br>1600 | - 4<br>00<br>800<br>1001<br>2500<br>1600 | 1600<br>2000                      | 3 -<br>1(<br>1000<br>1250<br>1600<br>2000 | 4<br>00<br>800<br>1000<br>1250<br>1600 | 1250<br>1600                 | 2500<br>3200                | 1000<br>1250<br>1600<br>2000<br>2500<br>3200          | 3 - 4<br>100<br>800<br>1250<br>1600<br>2000<br>2500<br>3200 | 800<br>1250<br>1600<br>2000<br>2500<br>3200          | 2000<br>2500                 |
| Ue<br>Icu<br>Ics<br>Icw                                       | (220415V)<br>(220415V)<br>(1s)<br>(3s)                                                | [V~]<br>[kA]<br>[kA]<br>[kA]                   | 690<br>42<br>42<br>42<br>36              | 690<br>50<br>50<br>50<br>36              | 690<br>42<br>42<br>42<br>42<br>42 | 690<br>65<br>65<br>55<br>42               | 690<br>85<br>85<br>65<br>42            | 690<br>130<br>130<br>10<br>— | 690<br>65<br>65<br>65<br>65 | 690<br>75<br>75<br>75<br>75<br>75                     | 690<br>100<br>85<br>75<br>65                                | 690<br>130<br>100<br>85<br>65                        | 690<br>130<br>130<br>15<br>— |
| Automati                                                      | c circuit-breakers with full-size neut                                                | ral conduc                                     | tor                                      |                                          |                                   |                                           |                                        |                              |                             |                                                       |                                                             |                                                      |                              |
| Poles<br>4p cb r<br>lu<br>Ue<br>Icu<br>Ics<br>Icw             | neutral current-carring capacity<br>(40 °C)<br>(220415V)<br>(220415V)<br>(1s)<br>(3s) | [No.]<br>[%lu]<br>[V~]<br>[kA]<br>[kA]<br>[kA] | Standard                                 | d version                                |                                   | Standard                                  | d version                              |                              |                             | Sta                                                   | ndard versi                                                 | ion                                                  |                              |
| Switch-di                                                     | isconnectors                                                                          | [0]                                            | E1B/MS                                   | E1N/MS                                   | E2B/MS                            | E2N/MS                                    | E2S/MS                                 |                              | E3N/MS                      | E3S/MS                                                |                                                             | E3V/MS                                               |                              |
| Poles<br>Iu                                                   | (40 °C)                                                                               | [No.]<br>[A]                                   | 3 - 4<br>800<br>1000<br>1250<br>1600     | 3 - 4<br>800<br>1000<br>2500<br>1600     | 3 - 4<br>1600<br>2000             | 3 - 4<br>1000<br>1250<br>1600<br>2000     | 3 - 4<br>1000<br>1250<br>1600<br>2000  |                              | 3 - 4<br>2500<br>3200       | 3 - 4<br>1000<br>1250<br>1600<br>2000<br>2500<br>3200 |                                                             | 3 - 4<br>800<br>1250<br>1600<br>2000<br>2500<br>3200 |                              |
| Ue<br>Icw<br><u>Icm</u>                                       | (1s)<br>(3s)<br>(220440V)                                                             | [V~]<br>[kA]<br>[kA]<br>[kA]                   | 690<br>42<br>36<br>88.2                  | 690<br>50<br>36<br>105                   | 690<br>42<br>42<br>88.2           | 690<br>42<br>42<br>88.2                   | 690<br>65<br>42<br>143                 |                              | 690<br>65<br>65<br>143      | 690<br>75<br>65<br>165                                |                                                             | 690<br>85<br>65<br>286                               |                              |
| Poles<br>lu                                                   | (40 °C)                                                                               | [No.]<br>[A]                                   |                                          |                                          | 3 - 4<br>1600<br>2000             | 3 - 4<br>1250<br>1600<br>2000             |                                        |                              |                             |                                                       | 3 - 4<br>1250<br>1600<br>2000<br>2500<br>3200               |                                                      |                              |
| Ue<br>Icu<br>Ics<br>Icw                                       | (1150V)<br>(1150V)<br>(1s)                                                            | [V~]<br>[kA]<br>[kA]<br>[kA]                   |                                          |                                          | 1150<br>20<br>20<br>20            | 1150<br>30<br>30<br>30                    |                                        |                              |                             |                                                       | 1150<br>30 ①<br>30 ①<br>30 ①                                |                                                      |                              |
| Switch-disconnectors for applications up to 1150VAC           |                                                                                       |                                                |                                          |                                          | E2B/E MS E2N/E MS                 |                                           |                                        |                              | E3H/E MS                    |                                                       |                                                             |                                                      |                              |
| Poles<br>Iu                                                   | (40 °C)                                                                               | [No.]<br>[A]                                   |                                          |                                          | 3 - 4<br>1600<br>2000             | 3 - 4<br>1250<br>1600<br>2000             |                                        |                              |                             |                                                       | 3 - 4<br>1250<br>1600<br>2000<br>2500<br>3200               |                                                      |                              |
| Ue<br>Icu<br>Ics                                              | (1s)<br>(1000V)                                                                       | [V~]<br>[kA]<br>[kA]                           |                                          |                                          | 1150<br>20<br>40                  | 1150<br>30<br>63                          |                                        |                              |                             |                                                       | 1150<br>50<br>105                                           |                                                      |                              |
| Poles INo 1 3 - 4                                             |                                                                                       |                                                | E2N/E MS<br>3 - 4                        |                                          |                                   |                                           | E3H/E MS                               |                              |                             |                                                       |                                                             |                                                      |                              |
| lu                                                            | (40 °C)                                                                               | [A]                                            | 800-1250                                 |                                          |                                   | 1250<br>1600<br>2000                      |                                        |                              |                             |                                                       | 1250<br>1600<br>2000<br>2500<br>3200                        |                                                      |                              |
| UE<br>Icw<br>Icm                                              | (1s)<br>(750V)                                                                        | [V~]<br>[kA]<br>[kA]                           | 750 (3p)-<br>1000(4p)<br>20<br>42        |                                          |                                   | 750 (3p)-<br>1000(4p)<br>25<br>52.5       |                                        |                              |                             |                                                       | 750 (3p)-<br>1000(4p)<br>40<br>105                          |                                                      |                              |
|                                                               | (1000V)                                                                               | [kA]                                           | 42                                       |                                          |                                   | 52.5                                      |                                        |                              |                             |                                                       | 105                                                         |                                                      |                              |
| Sectionalizing truck           Iu         (40 °C)         [A] |                                                                                       |                                                | E1 CS                                    |                                          | 2000                              |                                           |                                        |                              |                             | E3 CS<br>3200                                         |                                                             |                                                      |                              |
| Earthing s                                                    | (40 °C)                                                                               | [A]                                            |                                          | E1 MTP<br>1250                           |                                   | <b>E2 MTP</b><br>2000                     |                                        |                              |                             |                                                       | E3 MTP<br>3200                                              |                                                      |                              |
| Earthing t                                                    | ruck                                                                                  |                                                |                                          | E1 MT                                    |                                   | E2 MT                                     |                                        |                              |                             |                                                       | E3 MT                                                       |                                                      |                              |

 Iu
 (40 °C)

 ① The performance at 1000V is 50kA.

ABB Inc. • 888-385-1221 • www.abb-control.com


## Protection trip units and trip curves PR121/P

#### **Characteristics**

PR121/P is the new basic and complete trip unit for the Emax series. The complete range of protection functions together with the wide combination of thresholds and trip times offered make it suitable for protecting a wide range of alternating current installation. In addition to protection functions the unit is provided with multifunction LED indicators. Furthermore, PR121/P allows connection to external devices enhancing its advanced characteristics like remote signal-ling and monitoring, or remote supervision display.



- Caption 1 LED signalling Alarm for protection function L
- 2 LED signalling Alarm for protection function S
- **3** LED signalling Alarm for protection function I
- 4 LED signalling Alarm for protection function G
- 5 DIP switches for fine setting current threshold I1
- 6 DIP switches for main setting current threshold I1
- 7 DIP switches for setting current threshold I2
- 8 DIP switches for setting current threshold I3

- 9 DIP switches for setting current threshold I4
- **10** DIP switches for setting trip time t1 (type of curve)
- **11** DIP switches for setting trip time t2 (type of curve)
- 12 DIP switches for setting trip time t4 (type of curve)
- 13 Indication of the DIP switch position for network frequency
- 14 Indication of the DIP switch position for Neutral protection setting
- 15 Rating plug
- 16 Indication of the DIP switch positions for the various current thresholds values I1

- 17 Indication of the DIP switch positions for the various current threshold values I2
- **18** Indication of the DIP switch positions for the various current threshold values I3
- **19** Indication of the DIP switch positions for the various current
- threshold values I4 20 Indication of DIP switch positions
- for the various time settings t121 Indication of DIP switch positions for the various time settings t2
- 22 Indication of DIP switch positions for the various time settings t4
- 23 DIP switch for setting network frequency and neutral protection setting

- 24 Trip cause indication and trip test pushbutton
- 25 Test connector for connecting or testing the trip unit through an external device (PR030/B battery unit, BT030 wireless communication unit and SACE PR010/T unit)
- 26 Serial number of protection trip unit

#### **Operation and protection functions**

#### **Protection functions**

The PR121 trip unit offers the following protection functions:

- overload (L)
- selective short-circuit (S)
- instantaneous short-circuit (I)
- earth fault (G).

#### Overload (L)

The inverse long time-delay trip overload protection L is type  $l^2t = k$ ; 25 current thresholds and 8 curves are available. Each curve is identified by the trip time in relation to the current  $l = 3 \times l1$  (l1 = set threshold).

#### Selective short-circuit (S)

The selective short-circuit protection S can be set with two different types of curves with a trip time independent of the current (t = k) or with a constant specific let-through energy (t = k/l<sup>2</sup>). 15 current thresholds and 8 curves are available, allowing a fine setting. Each curve is identified as follows:

- for curves t = k by the trip time for l > l2
- for curves t = k/l<sup>2</sup> by the trip time for l = 10xln (ln = rated current of the circuitbreaker).

The function can be excluded by setting the DIP switches to the combination labelled "OFF".

#### Adjustable instantaneous short-circuit (I)

The protection I offers 15 trip thresholds and can be excluded (dip switches in "OFF" position).

#### Earth fault (G)

The earth fault protection G (which can be excluded) offers 7 current thresholds and 4 curves. Each curve is identified by the time t4 in relation to current I4. As per S protection the trip time can be chosen independent of the current (t = k) or with a constant specific let-through energy (t =  $k/l^2$ ).

Note: the current values above which G is disabled are indicated in the installation manual.





#### Protection trip units and trip curves PR121/P

#### User interface

The user communicates directly with the trip unit in the trip parameter preparation stage by means of the dip switches.

Up to four LEDs (according to the version) are also available for signalling.

These LEDs (one for each protection) are active when:

- a protection is timing. For protection L the prealarm status is also shown;
- a protection has tripped (the corresponding LED is activated by pressing the "Info/Test" pushbutton);
- a failure in connection of a current sensor or in the opening solenoid is detected. The indication is active when the unit is powered (through current sensors or an auxiliary power supply)
- wrong rating plug for the circuit-breaker.

The protection tripped indication works even with the circuit-breaker open, without the need for any internal or external auxiliary power supply. This information is available for 48 hours of inactivity after the trip and is still available after reclosing. If the query is made more than 48 hours later it is sufficient to connect a PR030/B battery unit, PR010/T, or a BT030 wireless communication unit.

#### Communication

By means of the BT030 wireless communication unit, PR121/P can be connected to a pocket PC (PDA) or to a personal computer, extending the range of information available for the user. In fact, by means of ABB SACE's SD-Pocket communication software, It is possible to read the values of the currents flowing through the circuit-breaker, the value of the last 20 interrupted currents, and the protection settings.

PR121 can also be connected to the optional external PR021/K signalling unit, for the remote signalling of protections alarms and trips, and to HMI030, for the remote user interfacing.

#### Setting the neutral

Protection of the neutral can be set at 50%, 100% or 200% of the phase currents. Settings above 50% can be selected for E1-E2-E3-E4/f and E6/f. In particular, setting the neutral at 200% of phase current requires protection L to be set at 0.5ln in order to respect the current-carrying capacity of the circuit-breaker. The user can also switch the neutral protection OFF. When three-poles circuit-breakers with external neutral current sensor are used, a setting above 100% for the neutral does not require any reduction in the L setting.

#### **Test Function**

The Test function is carried out by means of the info/Test pushbutton and the PR030/B battery unit (or BT030) fitted with a polarized connector housed on the bottom of the box, which allows the device to be connected to the test connector on the front of PR121/P trip units.

The PR121/P electronic trip unit can be tested by using the SACE PR010/T test and configuration unit by connecting it to the TEST connector.

#### Versions available

The following versions are available:



PR121/P LI



PR121/P LSI



PR121/P LSIG

**4**/5

4



#### Protection trip units and trip curves

PR121/P

| Prot   | Protection functions and setting values - PR121 |                                                                                                                                                                                                   |                                                                                          |             |                    |
|--------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------|--------------------|
| Functi | on                                              | Trip threshold                                                                                                                                                                                    | Trip time*                                                                               | Poss. excl. | Relation t=f(l)    |
| C      | Overload<br>protection                          | H= 0,4 - 0.425 - 0.45 - 0.475 - 0.5 -<br>0.525 - 0.55 - 0.575 - 0.6 - 0.625 -<br>0.65 - 0.675 - 0.7 - 0.725 - 0.75 -<br>0.775 - 0.8 - 0.825 - 0.85 - 0.875<br>0.9 - 0.925 - 0.95 - 0.975 - 1 x In | With current If = 3 x I1<br>t1 = 3 - 12 - 24 - 36 - 48 - 72 - 108 - 144 s <sup>(1)</sup> | -           | t=k/l²             |
|        | Tolerance (2)                                   | Release between 1.05 and 1.2 x I1                                                                                                                                                                 | $\pm 10\%$ If $\le 6 \times In$<br>$\pm 20\%$ If $> 6 \times In$                         |             |                    |
| S      | Selective short-circuit<br>protection           | <b>I2=</b> 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5<br>6 - 7 - 8 - 8.5 - 9 - 9.5 - 10 x ln                                                                                                             | With current If > I2<br>t2 = 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 s             | <b>■</b>    | t=k                |
|        | Tolerance (2)                                   | $\pm 7\%$ If $\le 6 \times \ln$<br>$\pm 10\%$ If $> 6 \times \ln$                                                                                                                                 | The better of the two figures:<br>± 10% or ± 40 ms                                       |             |                    |
|        |                                                 | <b>I2=</b> 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5<br>6 - 7 - 8 - 8.5 - 9 - 9.5 - 10 x ln                                                                                                             | With current lf = 10 x ln<br>t2 = 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 s        | <b>■</b>    | t=k/l <sup>2</sup> |
|        | Tolerance (2)                                   | $\pm 7\%$ If $\le 6 \times \ln$<br>$\pm 10\%$ If $> 6 \times \ln$                                                                                                                                 | ± 15% If ≤ 6 x In<br>± 20% If > 6 x In                                                   |             |                    |
|        | Instantaneous<br>short-circuit protection       | <b>I3=</b> 1.5 - 2 - 3 - 4 - 5 - 6 - 7 - 8 -<br>9 - 10 - 11 - 12 - 13 - 14 - 15 x In                                                                                                              | Instantaneous                                                                            | •           | t=k                |
|        | Tolerance (2)                                   | ± 10%                                                                                                                                                                                             | ≤ 30 ms                                                                                  |             |                    |
| G      | Earth fault protection                          | <b>I4=</b> 0.2 - 0.3 - 0.4 - 0.6 - 0.8 - 0.9 - 1 x In                                                                                                                                             | With current lf > l4<br>t4 = 0.1 - 0.2 - 0.4 - 0.8 s                                     | •           | t=k                |
|        | Tolerance (2)                                   | ± 7%                                                                                                                                                                                              | The better of the two figures: $\pm$ 10% or $\pm$ 40 r                                   | ms          |                    |
|        |                                                 | <b>I4=</b> 0.2 - 0.3 - 0.4 - 0.6 - 0.8 - 0.9 - 1 x ln                                                                                                                                             | t4 = 0.1 @ 4.47 l4, t4 = 0.2 @ 3.16 l4,<br>t4 = 0.4 @ 2.24 l4, t4 = 0.8 @ 1.58 l4        | •           | t=k/l <sup>2</sup> |
|        | Tolerance (2)                                   | ± 7%                                                                                                                                                                                              | ± 15%                                                                                    |             |                    |

If = fault current \* Referring to the electronics

(1) The minimum trip time is 1 s, regardless of the type of curve set (self-protection)

(2) These tolerances are valid in the following conditions:

- self-supplied trip unit at full power (without start-up)
   two- or three-phase power supply
- trip time set ≥ 100 ms

The following tolerance values apply in all cases not covered by the above:

|   | Trip threshold                    | Trip time |
|---|-----------------------------------|-----------|
| L | Release between 1.05 and 1.2 x l1 | ±20%      |
| S | ± 10%                             | ± 20%     |
| I | ± 15%                             | ≤60ms     |
| G | ± 15%                             | ± 20%     |
|   |                                   |           |

#### Power supply

The unit does not require an external power supply either for protection functions or for alarm signalling functions. It is self-supplied by means of the current sensors installed on the circuitbreaker. For it to operate, the three phases must be loaded at 70A for E1, E2 and E3 and at 140A for E4 and E6. An external power supply can be connected in order to activate additional features, and in particular for connection to external devices: HMI030, and PR021/K.

|                                                    | PR121/P        |
|----------------------------------------------------|----------------|
| Auxiliary power<br>supply (galvanically insulated) | 24 V DC ± 20%  |
| Maximum ripple                                     | 5%             |
| Inrush current @ 24V                               | ~10 A for 5 ms |
| Rated power @ 24V                                  | ~2 W           |
|                                                    |                |





#### **Protection trip units and trip curves** PR121/P





Woodcrest Submittal

# Section III

## **Intertie Protection Relay**



#### PROTECTION

## Intertie/Generator Protection Relay M-3410A

Integrated Protection System®



M-3410A Horizontal Panel (Optional)

- Facilitates standardization for small/medium intertie and generator protection applications
- Microprocessor-based relay provides 15 protective relay functions, including Sync-Check, 2 programmable outputs and 2 programmable inputs
- Relay voltage inputs can be directly connected (no VT required) for voltages 480 V or less
- Local and remote serial communications (MODBUS protocol) capability for monitoring and control functions

#### **Protective Functions**

- Sync-check with Phase Angle,  $\Delta V$  and  $\Delta F$  with dead line/dead bus options (25)
- Phase undervoltage (27) protection
- Ground undervoltage (27G) protection
- Dual-setpoint, single or three phase, directional power detection that can be selected as over/ under power protection (32)
- Dual-zone, offset-mho loss-of-field for generator protection (40)
- Sensitive negative sequence overcurrent protection and alarm (46)
- Negative sequence overvoltage (47)
- Inverse time neutral overcurrent (51N)
- Phase overcurrent with voltage restraint/control (51V) protection
- Phase overvoltage (59) protection
- Ground overvoltage (59G) protection
- Peak overvoltage (59I) protection
- VT fuse-loss detection and blocking (60FL)
- Reconnect enable for intertie protection (79)
- Four-step over/under frequency (81) protection

#### **Standard Features**

- 2 programmable outputs, 2 programmable inputs, and 1 self-test output
- Oscillographic recording (COMTRADE file format)
- Time-stamped sequence of events recording for 32 events
- Metering of Voltage, Current, real and reactive Power, Power Factor, Frequency, and Positive Sequence Impedance
- · One RS-232 port (COM1) on front and one RS-232 or 485 port (COM2) on rear
- M-3810A IPScom<sup>®</sup> For Windows<sup>™</sup> Communications Software
- M-3811A IPScom For Palm OS® Communications Software
- MODBUS protocol
- Supports both 50 and 60 Hz applications
- Accepts 1A or 5 A rated CT inputs
- Relay voltage inputs can be directly connected (no VT required) for voltages  $\leq$  480 V ac
- Continuous Self-Diagnostics

#### **Optional Features**

- M-3801C IPSplot® Oscillograph Analysis Software
- Horizontal and Vertical panel mount versions available (see Figures 2 and 4)

#### **PROTECTIVE FUNCTIONS**

| Device<br>Number | Function              | Setpoint<br>Ranges | Increment | Accuracy                   |
|------------------|-----------------------|--------------------|-----------|----------------------------|
|                  | Sync Check            |                    |           |                            |
|                  | Phase Angle Window    | 0° to 90°          | 1°        | ± 1°                       |
|                  | Upper Voltage Limit   | 100.0 to 120.0%*   | 0.1%      | $\pm 0.5$ V or $\pm 0.5\%$ |
| 25               | Lower Voltage Limit   | 70.0 to 100.0%*    | 0.1%      | $\pm 0.5$ V or $\pm 0.5\%$ |
| 25               | Delta Voltage Limit   | 1.0 to 50.0%*      | 0.1%      | ±0.5 V                     |
|                  | Delta Frequency Limit | 0.001 to 0.500 Hz  | 0.001 Hz  | ±0.001 Hz or 5%            |
|                  | Sync Check Time Delay | 1 to 8160 Cycles   | 1 Cycle   |                            |
|                  | Dead Voltage Limit    | 0.0 to 50.0%*      | 0.1%      | $\pm 0.5$ V or $\pm 0.5\%$ |
|                  | Dead Time Delay       | 1 to 8160 Cycles   | 1 Cycle   | ±2 Cycles                  |
|                  | Dead Time Delay       | 1 to 8160 Cycles   | 1 Cycle   | ±2 Cycles                  |

\* Of nominal voltage.

Sync Check may be operated as a stand-alone function or supervised by 79 (reconnect). Various combinations of input supervised hot/dead closing schemes may be selected. This function can only be enabled in line-to-line VT configuration and when functions 27G and 59G are not enabled.

|    | Phase Undervoltag | je               |         |                 |
|----|-------------------|------------------|---------|-----------------|
| 27 | Pickup #1, #2     | 4 to 100%*       | 0.1%    | ±0.5 V or ±0.5% |
|    | Time Delay #1, #2 | 1 to 8160 Cycles | 1 Cycle | ±2 Cycles**     |

\* Of nominal voltage.

\*\* When DFT is selected, the time delay accuracy is  $\pm 2$  cycles. When RMS magnitude is selected, an additional time delay from 0 to +20 cycles may occur.

|            | Ground Undervo     | oltage           |         |                 |
|------------|--------------------|------------------|---------|-----------------|
| (27G)      | Pickup             | 4 to 100%*       | 1 %     | ±0.5 V or ±0.5% |
| $\bigcirc$ | Time Delay         | 1 to 8160 Cycles | 1 Cycle | ±2 Cycles       |
| Of nomin   | al valtaga mavimum | of 600 V         |         |                 |

\* Of nominal voltage, maximum of 600 V.

This function can only be enabled when the relay is configured in line-to-line VT and the 25 function is not enabled.

|    | <b>Directional Power</b> |                   |         |                  |
|----|--------------------------|-------------------|---------|------------------|
| 32 | Pickup #1, #2            | –3.00 to +3.00 PU | 0.01 PU | ±0.02 PU or ±2%* |
|    | Time Delay #1, #2        | 1 to 8160 Cycles  | 1 Cycle | ±2 Cycles        |

The per-unit pickup is based on nominal VT secondary voltage and nominal CT secondary current settings for currents less than 14 A (2.8 A). This function can be selected as overpower or underpower in the forward direction (positive setting) or reverse direction (negative setting). This function can also be selected for single phase detection for line-to-ground VT.

Minimum sensitivity of 100 mA for 5 A CT (real component of current).

\* Accuracy applies for a nominal current range of 2.5 A to 6 A (5 A CT) or 0.5 A to 1.5 A (1 A CT).

#### **PROTECTIVE FUNCTIONS (**cont.)

| Device<br>Number | Function                                                     | Setpoint<br>Ranges                              | Increment                     | Accuracy                                            |
|------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------|-----------------------------------------------------|
|                  | Loss-of-Field (dual-z                                        | one offset-mho cha                              | racteristic)                  |                                                     |
| 40               | Circle Diameter #1, #2<br>Offset #1, #2<br>Time Delay #1, #2 | 0.01 to 3.00<br>-2.0 to 2.0<br>1 to 8160 Cycles | 0.01 PU<br>0.01 PU<br>1 Cycle | ±0.01 PU or ±5%**<br>±0.01 PU or ±5%**<br>±2 Cycles |
| 27               | Voltage Control<br>(positive sequence)                       | 4 to 100%*                                      | 0.1%                          | $\pm 0.5 \text{ V or } \pm 0.5\%$                   |
|                  | Directional Element                                          | Fixed at -13°                                   | _                             | _                                                   |

\* Of nominal voltage.

\*\* Accuracy applies for a nominal current range of 2.5 A to 6 A (5 A CT) or 0.5 A to 1.5 A (1 A CT), and for a pickup of >5%.

|    | Negative Sequence Overcurrent                                         |                                                                               |                    |                                         |  |
|----|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|-----------------------------------------|--|
|    | <b>Definite Time</b><br>Pickup                                        | 3% to 300%*                                                                   | 1%                 | ±0.1 A or ±0.5%**<br>(±0.02 A or ±0.5%) |  |
|    | Time Delay                                                            | 1 to 8160 Cycles                                                              | 1 Cycle            | ±2 Cycles                               |  |
| 46 | <b>Inverse Time</b><br>Pickup                                         | 3% to 100%*                                                                   | 0.1%               | ±0.1 A or ±3%**<br>(±0.02 A or ±3%)     |  |
|    | Characteristic Curves                                                 | Definite Time/Inverse Time                                                    | e/Very Inverse/Ext | tremely Inverse/IEC/I22t=K              |  |
|    | Time Dial Setting                                                     | 0.5 to 11.0<br>0.05 to 1.1 (IEC)<br>1 to 95 (I <sub>2</sub> <sup>2</sup> t=K) | 0.1<br>0.01<br>1   | ±3 Cycles or ±10%**                     |  |
|    | For I <sup>2</sup> t=K Curve Only<br>Definite Maximum<br>Time to Trip | 600 to 65,500 Cycles                                                          | 1 Cycle            | ±3 Cycles or ±10%**                     |  |
|    | Reset Time (Linear)                                                   | 4 minutes<br>(from threshold of trip)                                         |                    |                                         |  |

\* Of nominal current for currents less than 14 A (2.8 A).

\*\* Accuracy applies for a nominal current range of 2.5 A to 6 A (5 A CT) or 0.5 A to 1.5 A (1 A CT), and for a pickup of >5%.

|            | <b>Negative Sequence</b>                               | Overvoltage                        |                   |                                   |
|------------|--------------------------------------------------------|------------------------------------|-------------------|-----------------------------------|
| <b>47</b>  | Pickup #1, #2<br>Time Delay #1, #2                     | 4 to 100%*<br>1 to 8160 Cycles     | 0.1%<br>1 Cycle   | ±0.5 V or ±0.5%<br>±2 Cycles      |
|            | Inverse Time Residu                                    | al Overcurrent                     |                   |                                   |
| $\bigcirc$ | Pickup                                                 | 0.50 to 6.00 A<br>(0.10 to 1.20 A) | 0.1 A             | ±0.1 A or ±3%<br>(±0.02 A or ±3%) |
| (51N)      | Characteristic Curves                                  | Definite Time/Inverse              | Time/Very Inverse | e/Extremely Inverse/IEC           |
| $\bigcirc$ | Time Dial<br>Standard Curves #1–#4<br>IEC Curves #1–#4 | 0.5 to 11.0<br>0.05 to 1.10        | 0.1<br>0.01       | $\pm 3$ Cycles or $\pm 10\%$      |

| PROTEC<br>Device<br>Number | CTIVE FUNCTION                                                              | S ( <i>cont</i> .)<br>Setpoint<br>Ranges                        | Increment                                     | Accuracy                                           |
|----------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
|                            | Inverse Time Ove                                                            | rcurrent, with Voltage                                          | e Control or Vo                               | ltage Restraint                                    |
|                            | Pickup                                                                      | 0.50 to 12.00 A<br>(0.10 to 2.40 A)                             | 0.01 A                                        | ±0.1 A or ±3%<br>(±0.02 A or ±3%)                  |
| $\frown$                   | Characteristic Curve                                                        | Definite Time/Inverse/\                                         | /ery Inverse/Extrem                           | ely Inverse/IEC Curves                             |
| (51V)                      | Time Dial                                                                   | 0.5 to 11.0<br>0.05 to 1.10 (IEC curves)                        | 0.1<br>0.01                                   | $\pm 3$ Cycles or $\pm 10\%$                       |
| $\bigcirc$                 | Voltage Control (VC)                                                        | 4.0 to 150.0%*                                                  | 0.1%                                          | $\pm 0.5$ V or $\pm 0.5\%$                         |
|                            | or<br>Voltage Restraint (VR)                                                | Linear Restraint                                                | _                                             | _                                                  |
| * Of nomina                | al voltage.                                                                 |                                                                 |                                               |                                                    |
|                            | Phase Overvoltage                                                           | •                                                               |                                               |                                                    |
| <b>50</b>                  | Pickup #1, #2                                                               | 100 to 150%*                                                    | 0.1%                                          | ±0.5 V or ±0.5%                                    |
| 59                         | Time Delay #1, #2                                                           | 1 to 8160 Cycles                                                | 1 Cycle                                       | ±2 Cycles**                                        |
| * Of nomin                 | nal voltage.                                                                |                                                                 |                                               |                                                    |
| ** When D                  | FT is selected, the time                                                    | delay accuracy is ±2 cycles                                     | . When RMS magn                               | nitude is selected, an                             |
|                            | Ground Quorvolta                                                            |                                                                 |                                               |                                                    |
|                            | Ground Overvoitag                                                           | je                                                              |                                               |                                                    |
| (59G)                      | Pickup                                                                      | 4 to 150%*                                                      | 1%                                            | $\pm 0.5$ V or $\pm 0.5\%$                         |
| $\bigcirc$                 | Time Delay                                                                  | 1 to 8160 Cycles                                                | 1 Cycle                                       | ±2 Cycles                                          |
| * Of nomin                 | nal voltage.                                                                |                                                                 | ·· · · · · · · · · · · · · · · · · · ·        |                                                    |
| enabled.                   | on can only be enabled w                                                    | nen the relay is configured in                                  | n line-to-line VI an                          | d the 25 function is not                           |
|                            | Peak Overvoltage                                                            |                                                                 |                                               |                                                    |
|                            | Pickup                                                                      | 100 to 150%*                                                    | 1%                                            | ±3%**                                              |
| 291                        | Time Delay                                                                  | 1 to 8160 Cycles                                                | 1 Cycle                                       | ±3 Cycles                                          |
| *Instantane                | eous voltage magnitude re                                                   | sponse; intended for ferrores                                   | onance protection.                            |                                                    |
| **For funda<br>of the harm | amental (60 Hz/50 Hz) sig<br>nonic signal increases.                        | nal only. For distorted input si                                | ignals, the accuracy                          | degrades as the order                              |
|                            | VT Fuse-Loss Det                                                            | ection                                                          |                                               |                                                    |
| (60)<br>FL                 | A VT fuse-loss conditior<br>the voltages and curren<br>from input contacts. | n is detected by using the pos<br>ts. VT fuse-loss output can b | itive and negative s<br>e initiated from inte | equence components or<br>rnally generated logic of |
| -                          | Time Delay                                                                  | 1 to 8160 Cycles                                                | 1 Cycle                                       | ±2 Cycles                                          |
|                            | Reconnect Enable                                                            | Time Delay                                                      |                                               |                                                    |

(79)

Time Delay

. . . . . . . . .

1 Cycle

2 to 65,500 Cycles

±2 Cycles

Reconnect timer starts when all outputs designated as trip outputs reset.

#### **PROTECTIVE FUNCTIONS (cont.)**

| Device<br>Number | Function                | Setpoint<br>Ranges                        | Increment | Accuracy                       |
|------------------|-------------------------|-------------------------------------------|-----------|--------------------------------|
|                  | Over/UnderFrequen       | cy                                        |           |                                |
| (81)             | Pickup #1, #2, #3, #4   | 50.00 to 67.00 Hz<br>(40.00 to 57.00 Hz*) | 0.01 Hz   | ±0.03 Hz                       |
| $\bigcirc$       | Time Delay #1,#2, #3, # | 4 2 to 65,500 Cycles                      | 1 Cycle   | $\pm 2$ Cycles or $\pm 0.01\%$ |

\*This range applies to 50 Hz nominal frequency models.

The pickup accuracy applies to 60 Hz models at a range of 57 to 63 Hz, and to 50 Hz models at a range of 47 to 53 Hz. The accuracy is  $\pm 0.15$  Hz for a range of 52 to 57 Hz, and 63 to 67 Hz (for 60 Hz nominal) and 42 to 47 Hz and 53 to 57 Hz (for 50 Hz nominal).

#### **Nominal Settings**

| Nominal Voltage  | 50 to 500 V*            | 1 V                | _                          |
|------------------|-------------------------|--------------------|----------------------------|
| Nominal Current  | 0.50 to 6.00 A          | 0.01 A             | _                          |
| VT Configuration | Line-Line/Line-Ground/L | ine-Ground-to-Line | e-Line**                   |
| Seal-in Delay    | 2 to 8160 Cycles        | 1 Cycle            | $\pm 1$ Cycle or $\pm 1\%$ |

\* Maximum measured range for (25), (59), (59G) and (59I) function settings is  $\leq$  600 V.

\*\* When line-ground-to-line-line is selected, the relay internally calculates the line-line voltage from the lineground voltages for all voltage-sensitive functions. When line-ground-to-line-line selection is applied, the nominal voltage selection should be the line-line nominal voltage (not line-ground nominal voltage).

#### **Tests and Standards**

The M-3410A Generator/Intertie Protection Relay complies with the following type tests and standards:

#### **Voltage Withstand**

#### **Dielectric Withstand**

All terminals except power supply and status input contacts, 2500 V ac/3500 V dc Power Supply and Status Input Contacts:

IEC 60255-5 1,500 V dc for power supply voltages (12, 24, 48 V inputs) 2500 V ac/3500 V dc for power supply voltages (120 V ac/125 V dc input)

■ NOTE: Digital data circuits (RS-232/485 communication ports) are excluded.

#### Impulse Voltage

#### Power Supply Input Voltages, 120 V ac/125 V dc:

IEC 60255-5 5,000 V pk, +/- polarity applied to each independent circuit to earth 5,000 V pk, +/- polarity applied between independent circuits 1.2 μs by 50 μs, 500 ohms impedance, three surges at every 5 second interval

**NOTE**: Digital data circuits (RS-232/485 communication ports) are excluded.

#### Power Supply Input Voltages, 12, 24, 48 V dc:

IEC 60255-5 3,000 V pk, +/- polarity applied to each independent circuit to earth 3,000 V pk, +/- polarity applied between independent circuits 1.2 μs by 50 μs, 500 ohms impedance, three surges at every 5 second interval

**NOTE**: Digital data circuits (RS-232/485 communication ports) are excluded.

#### Insulation Resistance

IEC 60255-5 > 40 Megaohms

■ NOTE: Digital data circuits (RS-232/485 communication ports) are excluded.

#### **Electrical Environment**

#### Electrostatic Discharge Test

IEC 61000-4-2 Class 4 (±8 kV) - point contact discharge and air discharge
 ■ NOTE: Digital data circuits (RS-232/485 communication ports) are excluded.

#### Fast Transient Disturbance Test

IEC 61000-4-4 (±2 kV, 5 kHz) AC Power Supply Input (±1 kV, 5 kHz) RS-232, RS-485 and ground

#### Surge

IEC 61000-4-5 ( $\pm 2$  kV, 1.2 µs by 50 µs line to ground) AC Power Supply Input ( $\pm 1$  kV, 1.2 µs by 50 µs line to line) AC Power Supply Input ( $\pm 1$  kV, 1.2 µs by 50 µs line to ground) RS-485 Port

#### Surge Withstand Capability

| 2,500 V pk-pk Oscillatory each independent circuit to earth |
|-------------------------------------------------------------|
| 2,500 V pk-pk Oscillatory between each independent circuit  |
| 5,000 V pk Fast Transient each independent circuit to earth |
| 5,000 V pk Fast Transient between each independent circuit  |
|                                                             |

**NOTE**: Digital data circuits (RS-232/485 communication ports) are excluded.

#### M-3410A Intertie/Generator Protection Relay

#### **Radiated Susceptibility**

ANSI/IEEE 25-1000 Mhz @ 35V/m C37.90.2 1987

#### **Output Contacts**

ANSI/IEEEMake 30 A for 0.2 seconds, off for 15 seconds for 2,000 operationsC37.90.0Section 6.7.1, Tripping Output Performance Requirements1989

#### **Atmospheric Environment**

#### Temperature

IEC 60068-2-1 Cold, -20° C for 96 hours IEC 60068-2-2 Dry Heat, +70° C for 96 hours IEC 60068-2-3 Damp Heat, +40° C @ 93% RH, for 96 hours

#### **Mechanical Environment**

#### Vibration

IEC 60255-21-1Vibration response Class 1, 0.5 g Vibration endurance Class 1, 1.0 g

#### Shock

MIL-STD-810C Method 516.2, Procedure 1, 11 ms, 15 g, 1/2 sine pulse, 3 pulses per axis

#### Compliance

UL-Listed per 508 – Industrial Control Equipment CSA-Certified per C22.2 No. 14-95 – Industrial Control Equipment CE Safety Directive – EN61010-1-1993, CAT II, Pollution Degree 2

#### **Physical**

Panel Mount
Size: 12.20" high x 12.00" wide x 2.56" deep (30.99 cm x 30.48 cm x 7.27 cm)
Approximate Weight: 5 lbs, 11 oz (2.11 kg)
Approximate Shipping Weight: 9 lbs, 13 oz (4.48 kg)

#### Horizontal/Vertical Panel Mount

**Size**: 3.46" high x 10.50" wide x 11.63" deep (8.8 cm x 26.7 cm x 29.54 cm) **Approximate Weight**: 6 lbs, 4 oz (2.84 kg) **Approximate Shipping Weight:** 10 lbs, 4 oz (10.7 kg)

Woodcrest Farm PR1

M-3410A

#### Unit Information

Device Type(ID): SerialM-3410A

Time: 05/29/2015 13:05:19

- Number: Software 3515
- Version: Setpoint V01.03.02
- Checksum: Calibration AF98
- Checksum: FFFF
- User Logo: Woodcrest Farm PR1

#### Communication Information

- Communication Address: 1
- Baud Rate (COM1/COM2): 9600 / 9600
- Parity (COM1/COM2): None / None
- Stop Bit (COM1/COM2): 1 / 1

#### FILE/SETPOINT INFORMATION

#### Profile Information

| Name: Jasor | Hoover                           | Filename:        | Relay              |
|-------------|----------------------------------|------------------|--------------------|
| Department: | Interconnections                 |                  |                    |
| Company:    | Martin Energy Group              |                  |                    |
| Comment:    | Proposed settings for PR1. Woodc | rest Farm Interc | connection Project |

#### Setup Relay

| Nominal Frequency:                                                     | 60 Hz                  | C.T.Secondary Rating:                       | 5 A     |
|------------------------------------------------------------------------|------------------------|---------------------------------------------|---------|
| Phase Rotation:                                                        | ABC                    | 59/27 Mag. Select:                          | DFT     |
| Nominal Voltage:                                                       | 480                    | Nominal Current:                            | 4.23    |
| Input Active State<br>open:<br>close:                                  | 1,2                    | Output Contact Mode<br>Normal:<br>Latching: | 1,2     |
| V.T.Configuration:                                                     | Line - Line            |                                             |         |
| Relay Seal-In Time(cycle                                               | s): Out1 Out2<br>30 30 | Delta-Y Transform:                          | Disable |
| V.T.Phase Ratio:                                                       | 1.0 : 1                | V.T.(Sync./Ground) Ratio:                   | 1.0 : 1 |
| C.T.Phase Ratio:                                                       | 160 : 1                |                                             |         |
| Output Relay Actuate<br>Deenergize to Trip(Failsa<br>Energize to Trip: | afe): 1<br>2           |                                             |         |
|                                                                        |                        |                                             |         |

#### Configuration I/O Matrix

|                                                                                 | OUTPUTS Blocking | Inpu        | ıts |   |
|---------------------------------------------------------------------------------|------------------|-------------|-----|---|
|                                                                                 | 2 1              | FL          | 2   | 1 |
|                                                                                 |                  |             |     |   |
| 25 Sync Check                                                                   |                  |             | +   | _ |
| (27 Undervolt. #1<br>#2                                                         |                  | _           | _   |   |
| 27G G. Undervolt.                                                               | DISAEE           |             | +   | _ |
| (32 Dir. Power #1<br>#2                                                         |                  | _           |     |   |
| $\left[\begin{array}{c} 40 \text{ Loss of Field} \\ \#2 \end{array}\right]^{+}$ |                  | - <b>\$</b> | _   |   |
| 46 N. Seq. OC IT                                                                | SABE             | <u> </u>    | _   |   |
| 47 N. Seq. Volt. #1<br>#2                                                       | SAE              |             | _   | _ |
| 51N Inv.T. Res.OC                                                               |                  |             | _   | _ |
| 51V Inv.T.OC                                                                    |                  |             | _   | _ |
| 59 Overvoltage <sup>#1</sup><br>#2                                              |                  |             | _   |   |
| 59I Pk Overvoltage                                                              |                  |             | +   | _ |
| 59G G. Overvolt.                                                                | DISAEE           |             | _   | - |
| 60FL VT Fuse-Loss                                                               |                  |             | _   | - |
| 79 Reconnect                                                                    | SABE             |             | +   |   |
| #1 -<br>#2 -<br>81 Frequency #3 -                                               |                  |             |     |   |
| #4                                                                              | SABE             |             |     |   |

| ( | Phase Angle Window:    | 10.0     | Lipper Volt Limit: | 110.0 %   |
|---|------------------------|----------|--------------------|-----------|
|   | Fliase Angle Willidow. | 10       | opper voit. Emilt. | 10.0 /0   |
|   | Lower Volt. Limit:     | 90.0 %   | Sync Check Delay:  | 30 Cycles |
|   | Dead Volt. Limit:      | 10.0 %   | Dead Time Delay:   | 30 Cycles |
|   | Delta Frequency:       | 0.200 Hz | Delta Voltage:     | 10.0 %    |
|   | Dead V1 Hot V2:        | Disable  | Hot V1 Dead V2:    | Disable   |
|   | Dead V1 Dead V2:       | Disable  | Supervised by F79: | Disable   |
|   | Dead Input Initiate:   |          | Phase Selection:   | AB        |
|   | OUTPUTS: 2.            |          | BLOCKING INPUTS:   |           |
| ~ |                        |          |                    |           |

#### [25] SYNC CHECK

| _        | [27    | JUNDERVOLTAGE          |    |
|----------|--------|------------------------|----|
| PICKUP:  | 88.0 % | TIME DELAY: 116 Cycles | #1 |
| OUTPUTS: | 1.     | BLOCKING INPUTS:       |    |
| PICKUP:  | 50.0 % | TIME DELAY: 6 Cycles   | #2 |
| OUTPUTS: | 1.     | BLOCKING INPUTS:       | )  |

#### [27G] GROUND UNDERVOLTAGE

| PICKUP:  | TIME DELAY:                       |  |
|----------|-----------------------------------|--|
| OUTPUTS: | BLOCKING INPUTS:<br>D I S A B L E |  |

#### [32] DIRECTIONAL POWER PICKUP: -0.08 PU TIME DELAY: 600 Cycles #1 **OVERPOWER:** Enable Three Phase Detection: Enable OUTPUTS: **BLOCKING INPUTS:** 1. #2 PICKUP: -0.08 PU TIME DELAY: 600 Cycles **OVERPOWER:** Enable Enable Three Phase Detection: OUTPUTS: 1. **BLOCKING INPUTS:**

| [40] LOSS C              | OF FIELD       |           |    |
|--------------------------|----------------|-----------|----|
| Circle Diameter: 1.00 PU | OFFSET:        | 0.09 PU   | #1 |
| VOLTAGE CONTROL: Disable | TIME DELAY:    | 10 Cycles |    |
| OUTPUTS: 1.              | BLOCKING INPUT | S: FL.    |    |
| Circle Diameter: 1.81 PU | OFFSET:        | 0.09 PU   | #2 |
| VOLTAGE CONTROL: Disable | TIME DELAY:    | 30 Cycles |    |
| OUTPUTS: 1.              | BLOCKING INPUT | S: FL.    |    |
| VOLTAGE:                 |                |           |    |

#### [46] NEGATIVE SEQUENCE OVERCURRENT

| PICKUP:   |              | TIME DELAY:                         |         | DT |
|-----------|--------------|-------------------------------------|---------|----|
| OUTPUTS:  | D I S A B -  | BLOCKING INPU <sup>-</sup><br>- L E | TS:     |    |
| PICKUP:   | 30.0 %       | TIME DIAL:                          | 10      | Π  |
| Max.Time: | 10000 Cycles | CURVE TYPE:                         | I*I*t=K |    |
|           | 1.           | BLOCKING INPU                       | TS:     |    |

#### [47] NEGATIVE SEQUENCE OVERVOLTAGE

| PICKUP:  | 25.0 %  | TIME DELAY:   | 60 Cycles | #1 |
|----------|---------|---------------|-----------|----|
| OUTPUTS: | 1.      | BLOCKING INPU | JTS:      |    |
| PICKUP:  |         | TIME DELAY:   |           | #2 |
| OUTPUTS: | D I S A | BLOCKING INPU | JTS:      | )  |

Woodcrest Farm PR1

#### [51N] INVERSE TIME RESIDUAL OVERCURRENT

| ( | PICKUP:     | 2.96 A | TIME DIAL:       | 0.50 |  |
|---|-------------|--------|------------------|------|--|
|   | CURVE TYPE: | IECI   |                  |      |  |
|   | OUTPUTS:    | 1.     | BLOCKING INPUTS: |      |  |

#### [51V] INVERSE TIME OVERCURRENT WITH VOLTAGE CONTROL OR RESTRAINT

| ( | PICKUP:     | 4.66 A | TIME DIAL:       | 0.75 | Ň        | ١ |
|---|-------------|--------|------------------|------|----------|---|
|   | CURVE TYPE: | IECI   | VOLTAGE CONTRO   | L:   | Restrain |   |
|   | OUTPUTS:    | 1.     | BLOCKING INPUTS: |      |          | / |

#### [59] OVERVOLTAGE PICKUP: 110.0 % #1 TIME DELAY: 56 Cycles OUTPUTS: 1. **BLOCKING INPUTS:** 120.0 % #2 PICKUP: TIME DELAY: 6 Cycles OUTPUTS: 1. **BLOCKING INPUTS:**

|          | [59G] GROUND OVERVOLTAGE          |
|----------|-----------------------------------|
| PICKUP:  | TIME DELAY:                       |
| OUTPUTS: | BLOCKING INPUTS:<br>D I S A B L E |

### [59I] PEAK OVERVOLTAGE PICKUP: 120 % TIME DELAY: 6 Cycles OUTPUTS: 1. BLOCKING INPUTS:

#### [60FL] VT FUSE-LOSS DETECTION

| TIME DELAY: | 10 Cycles | Input Initiate:  | FL. |
|-------------|-----------|------------------|-----|
| OUTPUTS:    | 1.        | BLOCKING INPUTS: | :   |

#### [79] RECONNECT ENABLE TIME DELAY

| TIME DELAY: | Reconnect Initiate:           |  |
|-------------|-------------------------------|--|
| OUTPUTS:    | BLOCKING INPUTS:<br>S A B L E |  |

| [81] OVER/UNDER FREQUENCY |          |                           |    |  |  |
|---------------------------|----------|---------------------------|----|--|--|
| PICKUP:                   | 57.00 Hz | TIME DELAY: 6 Cycles      | #1 |  |  |
| OUTPUTS:                  | 1.       | BLOCKING INPUTS:          |    |  |  |
| PICKUP:                   | 58.50 Hz | TIME DELAY: 6000 Cycles   | #2 |  |  |
| OUTPUTS:                  | 1.       | BLOCKING INPUTS:          |    |  |  |
| PICKUP:                   | 60.50 Hz | TIME DELAY: 6 Cycles      | #3 |  |  |
| OUTPUTS:                  | 1.       | BLOCKING INPUTS:          |    |  |  |
| PICKUP:                   |          | TIME DELAY:               | #4 |  |  |
| OUTPUTS:                  | D I S A  | BLOCKING INPUTS:<br>B L E |    |  |  |

# D Appendix D – Inverse Time Curves

This Appendix contains Inverse Time Curve families for the M-3410A functions which utilize the Inverse Time Overcurrent curves. Table D-1A and D-1B on pages D–2 and D–3 contains a list of the data that characterizes Definite Time, Inverse Time, Very Inverse Time, and Extremely Inverse Time Overcurrent Curves.

■ NOTE: The specified timing accuracy is applicable for currents above three times the pickup value.

#### M-3410A Instruction Book

| Multiple of Tap Setting | Definite Time | Inverse Time | Very Inverse Time | Extremely Inverse Time |
|-------------------------|---------------|--------------|-------------------|------------------------|
| 1.50                    | 0.69899       | 4.53954      | 3.46578           | 4.83520                |
| 1.55                    | 0.64862       | 4.15533      | 3.11203           | 4.28747                |
| 1.60                    | 0.60539       | 3.81903      | 2.81228           | 3.83562                |
| 1.65                    | 0.56803       | 3.52265      | 2.55654           | 3.45706                |
| 1.70                    | 0.53558       | 3.25987      | 2.33607           | 3.13573                |
| 1.75                    | 0.50725       | 3.02558      | 2.14431           | 2.85994                |
| 1.80                    | 0.48245       | 2.81566      | 1.97620           | 2.62094                |
| 1.85                    | 0.46068       | 2.62673      | 1.82779           | 2.41208                |
| 1.90                    | 0.44156       | 2.45599      | 1.69597           | 2.22822                |
| 1.95                    | 0.42477       | 2.30111      | 1.57823           | 2.06529                |
| 2.00                    | 0.41006       | 2.16013      | 1.47254           | 1.92006                |
| 2.05                    | 0.39721       | 2.03139      | 1.37723           | 1.78994                |
| 2.10                    | 0.38606       | 1.91348      | 1.29093           | 1.67278                |
| 2.15                    | 0.37648       | 1.80519      | 1.21249           | 1.56686                |
| 2.20                    | 0.36554       | 1.72257      | 1.12812           | 1.47820                |
| 2.30                    | 0.35293       | 1.54094      | 1.01626           | 1.32268                |
| 2.40                    | 0.34115       | 1.39104      | 0.92207           | 1.19250                |
| 2.50                    | 0.33018       | 1.26561      | 0.84190           | 1.08221                |
| 2.60                    | 0.31999       | 1.15945      | 0.77301           | 0.98780                |
| 2.70                    | 0.31057       | 1.06871      | 0.71334           | 0.90626                |
| 2.80                    | 0.30189       | 0.99049      | 0.66127           | 0.83527                |
| 2.90                    | 0.29392       | 0.92258      | 0.61554           | 0.77303                |
| 3.00                    | 0.28666       | 0.86325      | 0.57515           | 0.71811                |
| 3.10                    | 0.28007       | 0.81113      | 0.53930           | 0.66939                |
| 3.20                    | 0.27415       | 0.76514      | 0.50733           | 0.62593                |
| 3.30                    | 0.26889       | 0.72439      | 0.47870           | 0.58700                |
| 3.40                    | 0.26427       | 0.68818      | 0.45297           | 0.55196                |
| 3.50                    | 0.26030       | 0.65591      | 0.42977           | 0.52032                |
| 3.60                    | 0.25697       | 0.62710      | 0.40879           | 0.49163                |
| 3.70                    | 0.25429       | 0.60135      | 0.38977           | 0.46554                |
| 3.80                    | 0.25229       | 0.57832      | 0.37248           | 0.44175                |
| 4.00                    | 0.24975       | 0.53904      | 0.34102           | 0.40129                |
| 4.20                    | 0.24572       | 0.50641      | 0.31528           | 0.36564                |
| 4.40                    | 0.24197       | 0.47746      | 0.29332           | 0.33460                |
| 4.60                    | 0.23852       | 0.45176      | 0.27453           | 0.30741                |
| 4.80                    | 0.23541       | 0.42894      | 0.25841           | 0.28346                |

■ NOTE: The above times are in seconds and are given for a time dial of 1.0. For other time dial values, multiply the values in the table by the time dial value.

 Table D-1A
 M-3410A Inverse Time Overcurrent Relay Characteristic Curves (1 of 2)

| Multiple of Tap Setting | Definite Time | Inverse Time | Very Inverse Time | Extremely Inverse Time |
|-------------------------|---------------|--------------|-------------------|------------------------|
| 5.00                    | 0.23266       | 0.40871      | 0.24456           | 0.26227                |
| 5.20                    | 0.23029       | 0.39078      | 0.23269           | 0.24343                |
| 5.40                    | 0.22834       | 0.37495      | 0.22254           | 0.22660                |
| 5.60                    | 0.22684       | 0.36102      | 0.21394           | 0.21151                |
| 5.80                    | 0.22583       | 0.34884      | 0.20673           | 0.19793                |
| 6.00                    | 0.22534       | 0.33828      | 0.20081           | 0.18567                |
| 6.20                    | 0.22526       | 0.32771      | 0.19511           | 0.17531                |
| 6.40                    | 0.22492       | 0.31939      | 0.19044           | 0.16586                |
| 6.60                    | 0.22360       | 0.31150      | 0.18602           | 0.15731                |
| 6.80                    | 0.22230       | 0.30402      | 0.18187           | 0.14957                |
| 7.00                    | 0.22102       | 0.29695      | 0.17797           | 0.14253                |
| 7.20                    | 0.21977       | 0.29027      | 0.17431           | 0.13611                |
| 7.40                    | 0.21855       | 0.28398      | 0.17090           | 0.13027                |
| 7.60                    | 0.21736       | 0.27807      | 0.16773           | 0.12492                |
| 7.80                    | 0.21621       | 0.27253      | 0.16479           | 0.12003                |
| 8.00                    | 0.21510       | 0.26734      | 0.16209           | 0.11555                |
| 8.20                    | 0.21403       | 0.26251      | 0.15961           | 0.11144                |
| 8.40                    | 0.21300       | 0.25803      | 0.15736           | 0.10768                |
| 8.60                    | 0.21203       | 0.25388      | 0.15534           | 0.10422                |
| 8.80                    | 0.21111       | 0.25007      | 0.15354           | 0.10105                |
| 9.00                    | 0.21025       | 0.24660      | 0.15197           | 0.09814                |
| 9.50                    | 0.20813       | 0.23935      | 0.14770           | 0.09070                |
| 10.00                   | 0.20740       | 0.23422      | 0.14473           | 0.08474                |
| 10.50                   | 0.20667       | 0.22923      | 0.14180           | 0.07943                |
| 11.00                   | 0.20594       | 0.22442      | 0.13894           | 0.07469                |
| 11.50                   | 0.20521       | 0.21979      | 0.13615           | 0.07046                |
| 12.00                   | 0.20449       | 0.21536      | 0.13345           | 0.06667                |
| 12.50                   | 0.20378       | 0.21115      | 0.13084           | 0.06329                |
| 13.00                   | 0.20310       | 0.20716      | 0.12833           | 0.06026                |
| 13.50                   | 0.20243       | 0.20341      | 0.12593           | 0.05755                |
| 14.00                   | 0.20179       | 0.19991      | 0.12364           | 0.05513                |
| 14.50                   | 0.20119       | 0.19666      | 0.12146           | 0.05297                |
| 15.00                   | 0.20062       | 0.19367      | 0.11941           | 0.05104                |
| 15.50                   | 0.20009       | 0.19095      | 0.11747           | 0.04934                |
| 16.00                   | 0.19961       | 0.18851      | 0.11566           | 0.04784                |
| 16.50                   | 0.19918       | 0.18635      | 0.11398           | 0.04652                |
| 17.00                   | 0.19881       | 0.18449      | 0.11243           | 0.04539                |
| 17.50                   | 0.19851       | 0.18294      | 0.11102           | 0.04442                |
| 18.00                   | 0.19827       | 0.18171      | 0.10974           | 0.04362                |
| 18.50                   | 0.19811       | 0.18082      | 0.10861           | 0.04298                |
| 19.00                   | 0.19803       | 0.18029      | 0.10762           | 0.04250                |
| 19.50                   | 0.19803       | 0.18014      | 0.10679           | 0.04219                |
| 20.00                   | 0.19803       | 0.18014      | 0.10611           | 0.04205                |



Table D-1BM-3410A Inverse Time Overcurrent Relay Characteristic Curves (2 of 2)



Figure D-1 Definite Time Overcurrent Curve





Figure D-2 Inverse Time Overcurrent Curve



Figure D-3 Very Inverse Time Overcurrent Curve



Figure D-4 Extremely Inverse Time Overcurrent Curve



Figure D-5 IEC Curve #1 Inverse



Figure D-6 IEC Curve #2 Very Inverse



Figure D-7 IEC Curve #3 Extremely Inverse



Figure D-8 IEC Curve #4 Long-Time Inverse



**NOTE**: When the phase current exceeds 3X I nominal, the operating times will be greater than those shown.

\* 0.24 seconds for 50 Hz units.

Figure D-9 (46) Negative Sequence Overcurrent Inverse Time Curves for Generator Protection



Woodcrest Submittal

# Section IV

Potential and Current Transformers




#### Current Transformer Models 112, 113, 114, 115, 117

Window Diameter 2.25", 2.75", 3.25", 4.00", 4.62"

REGULATORY AGENCY APPROVALS E93779 E12779 E1289403 Manufactured to meet the requirements of ANSI/IEEE C57.13. Classified by U.L. in accordance with IEC 44-1



**APPLICATION:** Relaying and metering.

**FREQUENCY:** 50-400 Hz.

INSULATION LEVEL: 600 Volts, 10 kV BIL full wave.

Terminals are brass studs No. 8-32 with one flatwasher, lockwasher and regular nut.

Order mounting bracket kit 0221B01525 separately.

Multi-ratios available upon request.



#### Model 112 Window Diameter 2.25"

Approximate weight 25 lbs.

| CATALOG |          | RELAY | AN   | SI METER | RING CLA | HZ   | SECONDARY<br>WINDING<br>RESISTANCE | CONTI<br>THEF<br>RATING   | NUOUS<br>RMAL<br>FACTOR |                     |
|---------|----------|-------|------|----------|----------|------|------------------------------------|---------------------------|-------------------------|---------------------|
| NUMBER  | RATIO    | CLASS | BO.1 | BO.2     | BO.5     | BO.9 | B1.8                               | (OHMS @75 <sup>°</sup> C) | @ 30°C                  | @ 55 <sup>°</sup> C |
| 112-500 | 50:5     | C10   | 1.2  | 2.4      | -        | -    | -                                  | 0.029                     | 2.0                     | 2.0                 |
| 112-750 | 75:5     | C20   | 0.6  | 1.2      | 2.4      | 4.8  | -                                  | 0.046                     | 2.0                     | 2.0                 |
| 112-101 | 100:5 *  | C20   | 0.6  | 0.6      | 2.4      | 2.4  | 4.8                                | 0.062                     | 2.0                     | 2.0                 |
| 112-151 | 150:5 *  | C50   | 0.3  | 0.6      | 1.2      | 1.2  | 2.4                                | 0.093                     | 2.0                     | 2.0                 |
| 112-201 | 200:5 *  | C50   | 0.3  | 0.3      | 0.6      | 0.6  | 1.2                                | 0.124                     | 2.0                     | 2.0                 |
| 112-251 | 250:5 *  | C50   | 0.3  | 0.3      | 0.3      | 0.3  | 0.6                                | 0.155                     | 2.0                     | 2.0                 |
| 112-301 | 300:5 *  | C100  | 0.3  | 0.3      | 0.3      | 0.3  | 0.6                                | 0.186                     | 2.0                     | 2.0                 |
| 112-401 | 400:5 *  | C100  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.248                     | 2.0                     | 1.5                 |
| 112-501 | 500:5 *  | C100  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.341                     | 2.0                     | 1.5                 |
| 112-601 | 600:5 *  | C100  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.409                     | 1.5                     | 1.33                |
| 112-751 | 750:5 *  | C200  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.495                     | 1.5                     | 1.0                 |
| 112-801 | 800:5 *  | C200  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.529                     | 1.5                     | 1.0                 |
| 112-102 | 1000:5 * | C200  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.661                     | 1.33                    | 1.0                 |
| 112-122 | 1200:5 * | C200  | 0.3  | 0.3      | 0.3      | 0.3  | 0.3                                | 0.793                     | 1.33                    | 1.0                 |

\* Industry Canada approval No. AE-10837



#### Model 113 Window Diameter 2.75"

Approximate weight 13 lbs.

|   | CATALOG | LOG CURRENT RELAY |       |      | METER | ING CL | ASS AT | SECONDARY<br>WINDING<br>RESISTANCE | CONTII<br>THEF<br>RATING   | NUOUS<br>MAL<br>FACTOR |                     |
|---|---------|-------------------|-------|------|-------|--------|--------|------------------------------------|----------------------------|------------------------|---------------------|
| ŧ | NUMBER  | RATIO             | CLASS | BO.1 | BO.2  | BO.5   | BO.9   | B1.8                               | (OHMS @ 75 <sup>°</sup> C) | @ 30 <sup>°</sup> C    | @ 55 <sup>°</sup> C |
|   | 113—500 | 50:5              | C10   | 2.4  | 4.8   | -      | -      | -                                  | 0.033                      | 2.0                    | 2.0                 |
| H | 113—750 | 75:5              | C10   | 0.6  | 1.2   | 4.8    | 4.8    | -                                  | 0.043                      | 2.0                    | 2.0                 |
|   | 113—101 | 100:5             | C20   | 0.6  | 0.6   | 2.4    | 2.4    | 4.8                                | 0.059                      | 2.0                    | 2.0                 |
|   | 113—151 | 150:5             | C20   | 0.3  | 0.3   | 0.6    | 1.2    | 2.4                                | 0.089                      | 2.0                    | 2.0                 |
|   | 113—201 | 200:5 *           | C20   | 0.3  | 0.3   | 0.6    | 0.6    | 1.2                                | 0.118                      | 2.0                    | 2.0                 |
|   | 113—251 | 250:5 *           | C50   | 0.3  | 0.3   | 0.6    | 0.6    | 1.2                                | 0.163                      | 2.0                    | 2.0                 |
|   | 113—301 | 300:5 *           | C50   | 0.3  | 0.3   | 0.3    | 0.6    | 1.2                                | 0.195                      | 2.0                    | 2.0                 |
|   | 113—401 | 400:5 *           | C100  | 0.3  | 0.3   | 0.3    | 0.3    | 0.6                                | 0.260                      | 2.0                    | 1.5                 |
|   | 113-501 | 500:5 *           | C100  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.325                      | 2.0                    | 1.5                 |
|   | 113—601 | 600:5 *           | C100  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.390                      | 1.5                    | 1.33                |
| T | 113—751 | 750:5 *           | C200  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.488                      | 1.5                    | 1.0                 |
|   | 113—801 | 800:5 *           | C200  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.503                      | 1.5                    | 1.0                 |
| Ħ | 113-102 | 1000:5 *          | C200  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.629                      | 1.33                   | 1.0                 |
| Ŧ | 113-122 | 1200:5 *          | C200  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.755                      | 1.33                   | 1.0                 |
|   | 113—152 | 1500:5 *          | C200  | 0.3  | 0.3   | 0.3    | 0.3    | 0.3                                | 0.943                      | 1.0                    | 0.8                 |





#### Model 114 Window Diameter 3.25"

Approximate weight 22 lbs.

| CATALOG | CURRENT  | ANSI METERING CLASS AT 60HZ |      |      |      |      | SECONDARY<br>WINDING<br>RESISTANCE | CONTII<br>THEF<br>RATING   | NUOUS<br>RMAL<br>FACTOR |                     |
|---------|----------|-----------------------------|------|------|------|------|------------------------------------|----------------------------|-------------------------|---------------------|
| NUMBER  | RAIIO    | CLASS                       | BO.1 | BO.2 | BO.5 | BO.9 | B1.8                               | (OHMS @ 75 <sup>°</sup> C) | @ 30°C                  | @ 55 <sup>°</sup> C |
| 114—500 | 50:5     | C10                         | 2.4  | 4.8  | -    | -    | -                                  | 0.024                      | 2.0                     | 2.0                 |
| 114—750 | 75:5     | C10                         | 1.2  | 2.4  | 4.8  | -    | -                                  | 0.040                      | 2.0                     | 2.0                 |
| 114—101 | 100:5    | C10                         | 1.2  | 1.2  | 2.4  | 4.8  | _                                  | 0.055                      | 2.0                     | 2.0                 |
| 114—151 | 150:5 *  | C20                         | 0.6  | 0.6  | 1.2  | 2.4  | 4.8                                | 0.082                      | 2.0                     | 2.0                 |
| 114—201 | 200:5 *  | C20                         | 0.3  | 0.3  | 0.6  | 1.2  | 2.4                                | 0.112                      | 2.0                     | 2.0                 |
| 114—251 | 250:5 *  | C50                         | 0.3  | 0.3  | 0.6  | 1.2  | 1.2                                | 0.141                      | 2.0                     | 2.0                 |
| 114—301 | 300:5 *  | C50                         | 0.3  | 0.3  | 0.6  | 0.6  | 1.2                                | 0.165                      | 2.0                     | 2.0                 |
| 114—401 | 400:5 *  | C100                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.6                                | 0.220                      | 2.0                     | 1.5                 |
| 114-501 | 500:5 *  | C100                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.6                                | 0.267                      | 2.0                     | 1.5                 |
| 114—601 | 600:5 *  | C100                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.371                      | 1.5                     | 1.33                |
| 114—751 | 750:5 *  | C100                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.464                      | 1.5                     | 1.0                 |
| 114—801 | 800:5 *  | C200                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.495                      | 1.5                     | 1.0                 |
| 114—102 | 1000:5 * | C100                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.597                      | 1.5                     | 1.0                 |
| 114-122 | 1200:5 * | C200                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.716                      | 1.33                    | 1.0                 |
| 114—152 | 1500:5 * | C200                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.896                      | 1.0                     | 0.8                 |
| 114—162 | 1600:5 * | C200                        | 0.3  | 0.3  | 0.3  | 0.3  | 0.3                                | 0.955                      | 1.0                     | 0.8                 |

\* Industry Canada Approval No. T-191

USA, Canada, Asia, Latin America

Tel: +1-800-547-8629 Fax: +1-905-201-2455 e-mail: <u>sales.multilin@ge.com</u>

#### Europe, Middle East, Africa Tel: +34-94-485-88-00

Fax: +34-94-485-88-45 e-mail: gemultilin.euro@ge.com

Please refer to our website www.GEMultilin.com for more detailed contact information





#### Model 117 Window Diameter 4.62"

Approximate weight 13 lbs. CONTINUOUS SECONDARY WINDING RESISTANCE ANSI METERING CLASS AT 60HZ CATALOG CURRENT THERMAL RELAY RATING FACTOR NUMBER RATIO CLASS BO.1 BO.2 BO.5 BO.9 B1.8 (OHMS @ 75°C) @ 30°C @ 55°C 117-500 50:5 \_ 2.4 48 0.015 2.0 2.0 117-750 75.5 06 12 0.024 20 20 48 48 \_ \_ 117-101 100:5 0.6 0.6 2.4 2.4 \_ 0.043 2.0 2.0 \_ 117-151 150:5 C10 4.8 0.069 2.0 2.0 0.3 0.3 0.6 1.2 117-201 4.8 0.085 2.0 200.5 C10 03 03 0.6 20 0.6 117-251 250:5 \* C20 0.3 0.3 0.6 0.6 2.4 0.106 2.0 2.0 117-301 300:5 \* C20 0.3 0.3 0.3 0.3 2.4 0.145 2.0 2.0 117-401 400.5 \* C20 0.3 0.3 0.3 0.3 1.2 0.184 20 2.0 117-501 500:5 \* C20 0.3 0.3 0.3 0.3 0.6 0.236 2.0 1.5 117-601 600:5 \* C20 0.3 0.3 0.3 0.3 0.6 0.283 2.0 1.5 117-751 750:5 \* C50 03 03 03 03 03 035/ 1.5 1 3 3 117-801 800:5 \* C50 0.3 0.3 0.3 0.3 0.3 0.425 1.5 1.33 117-102 1000:5 \* C50 0.3 0.3 0.3 0.3 0.3 0.531 1.5 1.0 117-122 1200:5 \* 0.637 1.33 C100 0.3 0.3 0.3 0.3 0.3 1.0 117-152 1500:5 \* C50 0.3 0.3 0.3 0.3 0.3 0.768 1.33 1.0 0.819 117-162 1600:5 \* C50 0.3 0.3 0.3 0.3 0.3 1.0 0.8 117-202 2000:5 \* C100 0.3 1.024 1.0 0.6 0.3 0.3 0.3 0.3 117-252 2500:5 \* C100 0.3 0.3 1.279 1.0 0.3 0.3 0.3 0.6 117-302 3000:5 \* 0.3 0.3 0.3 0.3 0.3 1.428 1.0 0.6 117-322 3200:5 \* 0.3 0.3 0.3 0.3 0.3 1.523 1.0 0.6 117-402 4000:5 \* 2.385 0.8 0.3 0.3 0.3 0.3 0.3 0.6

\* Industry Canada Approval No. T-193

### Models 112, 113, 114, 115, 117



USA, Canada, Asia, Latin America Tel: +1-800-547-8629 Fax: +1-905-201-2455 e-mail: <u>sales.multilin@ge.com</u> **Europe, Middle East, Africa** Tel: +34-94-485-88-00 Fax: +34-94-485-88-45 e-mail: gemultilin.euro@ge.com

32 Section 2

Please refer to our website www.GEMultilin.com for more detailed contact information



Woodcrest Submittal

# Section V

## **Digital Genset Controller**



## InteliSys<sup>ℕ</sup><sup>™</sup>

#### PREMIUM AND COGENERATION GEN-SET CONTROLLER







ComAp is a member of AMPS (The Association of Manufacturers of Power generating Systems).



ComAp products meet the highest standards, with every stage of production undertaken in accordance with the ISO certification obtained in 1998.



Selected ComAp products have the UL Certification.

#### Description

InteliSys<sup>NT</sup> is an expandable controller for both single and multiple gen-sets operating in standby or parallel modes, especially in cogeneration (CHP) and other complex applications.

Detachable construction (consisting of IS-NT-BB and IS-Display or InteliVision 8) allows easy installation with the potential for many different extension modules designed to suit individual customer requirements.

A built-in synchronizer and digital isochronous load sharer allow a total integrated solution for gen-sets in standby, island parallel or mains parallel. Native co-operation of up to 32 gen-sets is a standard feature.

InteliSys<sup>NT</sup> supports many standard ECU types and is specially designed to easily integrate new ones.

A powerful graphic display with userfriendly controls allows any user whatever their ability to find the information they need. The display on the basic version is capable of displaying graphical languages (e.g. Chinese).

ComAp is able to offer customized firmware solutions.

#### **Benefits**

- Support of engines with ECU (Electronic Control Unit)
- Excellent configurability to match customers' needs exactly
- Complete integrated gen-set solution incorporating built-in PLC and signal sharing via CAN bus – minimum external components needed
- Many communication options easy remote supervising and servicing
- Perfect price/performance ratio
- Gen-set performance log for easy problem tracing

#### **Features**

- CHP support (programmable PID loops and other built-in PLC functions)
- Support of engines with ECU (J1939, Modbus and other proprietary interfaces); alarm codes displayed in text form
- Automatic synchronizing and power control (via speed governor or ECU)
- Baseload, Import/Export, TempByPower
- Peak shaving
- Voltage and PF control (AVR)
- Generator measurement: U, I, Hz, kW, kVAr, kVA, PF, kWh, kVAhr
- Mains measurement: U, I, Hz, kW, kVAr, PF
- Selectable measurement ranges for AC voltages and currents – 120/277 V, 0–1/0–5 A
- Inputs and outputs configurable for various customer needs
- Controller redundancy
- 2x RS232/RS485 interface with Modbus protocol support; Analog/GSM/ISDN/CDMA modem communication support; SMS messages; ECU Modbus interface; secondary RS485 converter is isolated
- Event-based history (up to 1000 records) with customerselectable list of stored values; RTC; statistic values
- Integrated PLC programmable functions
- Interface to remote display units (IS-Display or/and InteliVision 8)
- USB 2.0 slave interface
- Dimensions 284 × 180 mm (front panel)
- Sealed to IP65

### Integrated fixed and configurable protections

- 3 phase integrated generator protections (U + f)
- IDMT overcurrent + Shortcurrent protection
- Overload protection
- Reverse power protection
- Earth fault protection
- 3 phase integrated mains protections (U + f)
- Vector shift protection
- All binary/analog inputs free configurable for various protection types: HistRecOnly / Alarm Only / Alarm + History indication / Warning / Off load / Slow stop / BreakerOpen&Cooldown / Shutdown / Shutdown override / Mains protect / Sensor fail
- Phase rotation and phase sequence protection
- Additional 160 programmable protections configurable for any measured value to create customer-specific protections
- Application security

#### **ANSI CODES**

| ANSI<br>code | Protection        | ANSI<br>code | Protection        |
|--------------|-------------------|--------------|-------------------|
| 59           | Overvoltage       | 50N+64       | Earth fault       |
| 27           | Undervoltage      | 32R          | Reverse power     |
| 47           | Voltage asymmetry | 25           | Synchronism check |
| 81H          | Overfrequency     | 47           | Phase rotation    |
| 81L          | Underfrequency    | 37           | Undercurrent*     |
| 50+51        | Overcurrent       | 55           | Power factor*     |
| 46           | Current unbalance | 71           | Gas (fuel) level  |
| 32           | Overload          |              |                   |
|              |                   |              |                   |

\* can be created using universal protections







### **Technical Data**

#### Power supply

|                                       | Controller      | IS-Display     | IG-Display      |
|---------------------------------------|-----------------|----------------|-----------------|
| Voltage supply                        | 8-36V DC        | 8-36V DC       | 8-36V DC        |
| Consumption depends on supply voltage | 0,4A at 8VDC    | 0,3A at 8VDC   | 0,4A at 8VDC    |
|                                       | 0,15 A at 24VDC | 0,1 A at 24VDC | 0,14 A at 24VDC |
|                                       | 0,1A at 36VDC   | 0,09A at 30VDC | 0,12A at 30VDC  |
| Battery voltage measurement tolerance | 2 % at 24V      |                |                 |
| RTC battery life-cycle                | 10 year         |                |                 |

Hint:

When internal RTC battery becomes flat, controller function (e.g. Ready for stand by) does not change until controller power supply is switched off. Some time before the battery is completely exhausted, a warning message appears in Alarmlist: "RTCbatteryFlat". After the next power switch on (with flat battery already) controller:

Stays in the INIT state (not possible to run genset)

All History records disappear except of "System log: SetpointCS err" record Time and Date values are set to zero

Statistics values are random

#### **Operating conditions**

| Operating temperature<br>Operating temperature IS-NT-BB<br>Operating temperature (LT version)<br>Storage temperature<br>Storage temperature IS-NT-BB<br>Flash memory data retention time<br>Protection front panel<br>Humidity | -20+70°C *<br>-40+70°C *<br>-40+70°C *<br>-30+80°C<br>-40+80°C<br>10 years<br>IP65<br>95% without condensation<br>IEC/EN 60068-2-30 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Standard conformity                                                                                                                                                                                                            |                                                                                                                                     |
| Low Voltage Directive                                                                                                                                                                                                          | EN 61010-1:95 +A1:97                                                                                                                |
| Electromagnetic Compatibility                                                                                                                                                                                                  | EN 50081-1:94 (EN 61000-6-3)                                                                                                        |
|                                                                                                                                                                                                                                | EN 50081-2:96 (EN 61000-6-4)                                                                                                        |
|                                                                                                                                                                                                                                | EN 50082-1:99 (EN 61000-6-1)                                                                                                        |
| Vibration                                                                                                                                                                                                                      | 5 - 25  Hz + 1.6  mm                                                                                                                |
| Vibration                                                                                                                                                                                                                      | 25 - 100  Hz, a = 4  g                                                                                                              |
| Shocks                                                                                                                                                                                                                         | $a = 200 \text{ m/s}^2$                                                                                                             |
| l limt.                                                                                                                                                                                                                        |                                                                                                                                     |

<u>Hint:</u> \* USB port should be used only above 0°C.



#### Dimensions and weight

| Dimensions | 180x120x80mm |
|------------|--------------|
| Weight     | 950g         |
|            |              |

#### Mains and generator

| Nominal frequency               | 50-60Hz |
|---------------------------------|---------|
| Frequency measurement tolerance | 0,1Hz   |

#### **Current inputs**

|                                 | IG-xx                        | IG-xxC / IS-NT-BB / IM-NT    |
|---------------------------------|------------------------------|------------------------------|
| Nominal input current (from CT) | 5 A                          | 1 A / 5 A                    |
| Load (CT output impedance)      | < 0,1 Ω                      | < 0,1 Ω                      |
| CT input burden                 | < 0,2 VA per phase (Inom=5A) | < 0,1 VA per phase (Inom=1A) |
|                                 |                              | < 0,2 VA per phase (Inom=5A) |
| Max. measured current from CT   | 10 A                         | 2 A / 10 A                   |
| Current measurement tolerance   | 2% from the Nominal current  | 2% from the Nominal current  |
| Max. peak current from CT       | 150 A / 1s                   | 150 A / 1s                   |
| Max. continuous current         | 12 A                         | 2,4 A / 12 A                 |

#### Voltage inputs – IG/IS-NT and modifications

|                                | IG-xx                           | IG-xxC / IS-NT-BB / IM-NT       |
|--------------------------------|---------------------------------|---------------------------------|
| Nominal voltage (ph-N / ph-ph) | 277/480 VAC                     | 120/207 or 277/480 VAC          |
| Maximal measured/allowed       | 346/600 VAC                     | 150/260 or 346/600 VAC          |
| voltage                        |                                 |                                 |
| Input resistance               | 0,6 M $\Omega$ phase to phase   | 0,6 M $\Omega$ phase to phase   |
|                                | 0,3 M $\Omega$ phase to neutral | 0,3 M $\Omega$ phase to neutral |
| Voltage measurement tolerance  | 1 % from the Nominal voltage    | 1 % from the Nominal voltage    |
| Over voltage class             | III / 2 (EN61010)               | III / 2 (EN61010)               |

<u>Hint:</u> kW, kWh, Load sharing, VAr sharing measurement tolerance is 3%.

#### Binary inputs and outputs

#### **Binary inputs**

|                                                            | IG-NT / IG-NTC | IG-EE / IG-EEC / IM-NT | IS-NT-BB |
|------------------------------------------------------------|----------------|------------------------|----------|
| Number of inputs                                           | 12             | 6                      | 16       |
| Input resistance                                           | 4,7 kΩ         | 4,7 kΩ                 | 4,7 kΩ   |
| Input range                                                | 0-36 VDC       | 0-36 VDC               | 0-36 VDC |
| Switching voltage level<br>for close contact<br>indication | 0-2 V          | 0-2 V                  | 0-2 V    |
| Max voltage level for open contact indication              | 8-36 V         | 8-36 V                 | 8-36 V   |

#### **Binary open collector outputs**

|                   | IG-NT / IG-NTC | IG-EE / IG-EEC / IM-NT | IS-NT-BB |
|-------------------|----------------|------------------------|----------|
| Number of outputs | 12             | 6                      | 16       |
| Maximum current   | 0,5 A          | 0,5 A                  | 0,5 A    |
| Maximum switching | 36 VDC         | 36 VDC                 | 36 VDC   |
| voltage           |                |                        |          |



#### Analog inputs

Not electrically separated Number of inputs Resolution Jumper selectable range Maximal resistance range Maximal voltage range Maximal current range Input impedance Input impedance Resistance measurement tolerance Voltage measurement tolerance Current measurement tolerance

3 / 0 / 4 unipolar ( IG-NT(x) / IG-EE(x), IM-NT / IS-NT-BB ) 10 bits V, ohm, mA 2500  $\Omega$ 5 V 0 - 20 mA 180  $\Omega$  for mA measuring > 100 k $\Omega$  for V measuring ± 2 % ± 2  $\Omega$  out of measured value ± 1 % ± 1mV out of measured value ± 1 % ± 0,5mA out of measured value

#### **D+** function

Max. D+ output current Guaranteed level for signal Charging OK 300 mA 80% of supply voltage

#### Speed pick-up input

Type of sensor Minimum input voltage Maximum input voltage Minimum measured frequency Maximum measured frequency Frequency measurement tolerance magnetic pick-up 2 Vpk-pk (from 4 Hz to 4 kHz) 50 Veff 4 Hz 10 kHz (min. input voltage 6Vpk-pk) 0,2 %

#### **Communication interface**

#### **RS232** interface

Maximal distance Speed 10m up to 57.6kBd

#### **RS485** interface

Maximal distance Speed 1000m up to 57.6kBd

#### **CAN** bus interface

Galvanically separated Maximal CAN bus length Speed Nominal impedance Cable type

200m 250kBd 120Ω twisted pair (shielded)

Following dynamic cable parameters are important especially for maximal 200 meters CAN bus length and<br/>32 iS-COM units connected:<br/>Nominal Velocity of PropagationNominal Velocity of Propagationmin. 75% (max. 4,4 ns/m)<br/>min.0,25 mm²<br/>2 dB / 100m

Recommended Industrial Automation & Process Control Cables: BELDEN (see <u>http://www.belden.com</u>): 3082A DeviceBus for Allen-Bradley DeviceNet 3083A DeviceBus for Allen-Bradley DeviceNet 3086A DeviceBus for Honeywell SDS

77



3087A DeviceBus for Honeywell SDS
3084A DeviceBus for Allen-Bradley DeviceNet
3085A DeviceBus for Allen-Bradley DeviceNet
3105A Paired EIA Industrial RS485 cable

LAPP CABLE (see <u>http://www.lappcable.com</u>) Unitronic BUS DeviceNet Trunk Cable Unitronic BUS DeviceNet Drop Cable Unitronic BUS CAN Unitronic-FD BUS P CAN UL/CSA

#### Analog outputs

| Speed governor output<br>AVRi outputs | $\pm$ 10 V DC / 5 V PWM (500 – 3000Hz), max. 15 mA PWM to IG-AVRi |
|---------------------------------------|-------------------------------------------------------------------|
| Current output                        | $0 - 20 \text{ mA} \pm 0.3 \text{mA}$                             |
| Voltage output                        | 0 – 10 V DC, max. 15 mA                                           |
| Max load resistance                   | 470R at 9,4V                                                      |
|                                       |                                                                   |

#### IG-AVRi

| Power supply:                          | 18V AC from IG-AVRi Trans/LV or IG-AVRi Trans/100    |
|----------------------------------------|------------------------------------------------------|
| Absolutely maximum power supply range: | 15 - 25 VAC or 20 - 35VDC                            |
| Inputs:                                | +AVR, -AVR (two wires, PWM from IG-CU)               |
| Outputs:                               | OUT1, OUT2 floating (potential free) voltage source. |
| AVRi output voltage range:             | potentiometer adjustable from +- 1V to +-10V DC.     |
| AVRi output current:                   | max 15 mA.                                           |
| Mechanical dimensions:                 | 96 x 27 x 43 mm, DIN rail (35 mm) mounted            |

#### IG-AVRi Trans/LV

| Primary voltage 1:    | 230-277 VAC   |
|-----------------------|---------------|
| Absolute low limit:   | 230 VAC – 20% |
| Absolute high limit:  | 277 VAC + 20% |
| Primary voltage 2:    | 400-480 VAC   |
| Absolute low limit:   | 400 VAC – 20% |
| Absolute high limit:  | 480 VAC + 20% |
| Frequency:            | 50 - 60 Hz    |
| Secondary voltage:    | 18 V AC, 5 VA |
| Operating temperature | -30+70°C      |

#### IG-AVRi Trans/100

| Primary voltage:      | 100 – 120 VAC |
|-----------------------|---------------|
| Absolute low limit:   | 100 VAC – 20% |
| Absolute high limit:  | 120 VAC + 20% |
| Frequency:            | 50 - 60 Hz    |
| Secondary voltage:    | 18 V AC       |
| Operating temperature | -30+70°C      |

#### **IGS-PTM**

| Voltage supply         | 8-36V DC                                   |
|------------------------|--------------------------------------------|
| Mechanical dimensions: | 40 x 95 x 45 mm , DIN rail (35 mm) mounted |
| Operating temperature  | -30+70°C                                   |

InteliGen<sup>NT</sup>, InteliSys<sup>NT</sup>, InteliMains<sup>NT</sup> – Installation Guide, ©ComAp – June 2008 IGS-NT-2.3-Installation Guide-r2.PDF



#### **Binary inputs**

| Number of inputs                                     | 8          |
|------------------------------------------------------|------------|
| Input resistance                                     | 4,7 kΩ     |
| Input range                                          | 0 - 36 VDC |
| Switching voltage level for close contact indication | 0 - 2 V    |
| Max voltage level for open contact indication        | 8-36 V     |

#### **Binary open collector outputs**

| Number of outputs         | 8      |
|---------------------------|--------|
| Maximum current           | 0,5 A  |
| Maximum switching voltage | 36 VDC |

#### **Analog inputs**

| Not electrically separated       |
|----------------------------------|
| Number of inputs                 |
| Resolution                       |
| Maximal resistance range         |
| Maximal voltage range            |
| Maximal current range            |
| Resistance measurement tolerance |
| Voltage measurement tolerance    |
| Current measurement tolerance    |

#### Analog output

Not electrically separated Number of inputs Resolution Output range

#### **IS-AIN8**

Nominal power supply Power supply range Max. consumption Mechanical dimensions:

Connection to controller (galvanically separated)

Operating temperature Storage temperature Protection front panel Humidity Standard conformity Low Voltage Directive Electromagnetic Compatibility

#### **Analog inputs**

Nominal power supply Power supply range Number of inputs Not galvanic separated Resolution

10 bits 0 – 250 Ω

4

0 – 100 mV 0 - 20 mA 1 %  $\pm$  2  $\Omega$  out of measured value  $1,5 \% \pm 1 \text{mV}$  out of measured value 2,5 % ±0,5mA out of measured value

1 10 bits 0 to 20 mA ± 0,33 mA

24 VDC 8-36 VDC 250 mA 150 x 160 x 50 mm. DIN rail (35 mm) mounted CAN1

-40..+70°C -40..+80°C IP 20 95% without condensation

EN 61010-1:95 +A1:97 EN 50081-1:94 (EN 61000-6-3) EN 50081-2:96 (EN 61000-6-4) EN 50082-1:99 (EN 61000-6-1) EN 50082-2:97 (EN 61000-6-2)

24 VDC 8-36 VDC 8

16 bits



Each analog input can be software configured to:

|            |                            | Measuring range |        | Accuracy |         |
|------------|----------------------------|-----------------|--------|----------|---------|
|            |                            | From            | to     |          |         |
| Resistance |                            | 0 Ω             | 2400   | Ω        | ± 0,5 % |
|            |                            | 0 Ω             | 250    | Ω        | ± 1,0 % |
| Current    | Passive                    | 0/4 mA          | 20     | mΑ       | ± 0,5 % |
|            | Active                     | 4 mA            | 20     | mΑ       | ± 0,5 % |
|            | Active                     | 0 mA            | ± 20   | mΑ       | ± 0,5 % |
| Voltage    | Thermocouples J, K, L type |                 |        |          | ± 0,2 % |
|            |                            | 0 mV            | 100    | mV       | ± 0,2 % |
|            |                            | - 1000 mV       | + 1000 | mV       | ± 0,5 % |
|            |                            | 0 mV            | 2500   | mV       | ± 0,5 % |

#### <u>Hint:</u>

Sensors must be isolated from the engine body (except for thermocouples (since HW version 5.0)). Follow rear sticker description and remove the appropriate jumpers in case of thermocouples not isolated from the engine body.

It's possible to connect voltage up to 10V to an analog input if an external volt box which is described on p.53 is used.

#### I-AOUT8

| Voltage supply<br>Consumption<br>Mechanical dimensions:<br>Interface to controller<br>Operating temperature<br>Number of analog outputs<br>Output range             | 8-36V DC<br>0,1A depend on supply voltage<br>40 x 95 x 45 mm , 35 mm DIN rail mounted<br>CAN<br>-30+70°C<br>8 (not electrically separated)<br>0 to 10 VDC<br>0 to 20 mA<br>PWM (1200 Hz)                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS-BIN16/8                                                                                                                                                          |                                                                                                                                                                                                                   |
| Nominal power supply<br>Power supply range<br>Max. consumption<br>Mechanical dimensions:<br>Connection to controller (galvanically separated)                       | 24 VDC<br>8 – 36 VDC<br>250 mA<br>150 x 160 x 50 mm ,<br>DIN rail (35 mm) mounted<br>CAN1                                                                                                                         |
| Operating temperature<br>Storage temperature<br>Protection front panel<br>Humidity<br>Standard conformity<br>Low Voltage Directive<br>Electromagnetic Compatibility | -30+70°C<br>-40+80°C<br>IP 20<br>95% without condensation<br>EN 61010-1:95 +A1:97<br>EN 50081-1:94 (EN 61000-6-3)<br>EN 50081-2:96 (EN 61000-6-4)<br>EN 50082-1:99 (EN 61000-6-1)<br>EN 50082-2:97 (EN 61000-6-2) |
| <b>Binary inputs</b><br>Galvanically separated two groups<br>Number of inputs<br>Input resistance<br>Input voltage range                                            | 8 + 8<br>3 kΩ<br>0-36 VDC                                                                                                                                                                                         |
| Input voltage level for open contact                                                                                                                                | 8 to Power supply VDC                                                                                                                                                                                             |
|                                                                                                                                                                     |                                                                                                                                                                                                                   |



Input voltage level for close contact 0 to 2 VDC Voltage level is defined between Binary input and Binary input COM terminal.

8

0,5 A 36 VDC

2 (RPM1, RPM2)

#### **Open collector outputs**

Number of outputs (galvanically separated) Maximum current Maximum switching voltage

#### **Frequency inputs**

Number of inputs

#### RPM1

Type of sensor Minimum input voltage Maximum input voltage Maximum measured frequency magnetic pick-up 2 Vpk-pk (from 4 Hz to 4 kHz) 50 Veff 8 kHz (min. input voltage 6Vpk-pk), frequency mode

RPM2

Type of sensor Minimal pulse width Maximum measured frequency Contact or Active sensor 10 ms, integration mode 60 Hz, integration mode

0,35-0,1A (+1A max horn output) Depend on supply voltage

8-36V DC

-20..+70°C

-30..+80°C

180x120x55mm

IP65

950g

1 A

36 VDC

Note: RPM1, RPM2 are available from IS SW version 2.6

#### IGL-RA15

#### Power supply

Voltage supply Consumption

#### **Operating conditions**

Operating temperature Storage temperature Protection front panel

#### **Dimensions and weight**

Dimensions Weight

#### Horn output

Maximum current Maximum switching voltage

#### I-CB, I-CR

#### **Power supply**

Voltage input Consumption 8-36V DC 0.1A depend on power supply

#### **Operating conditions**

| Operating temperature | -20 ÷ +70 °C |
|-----------------------|--------------|
| Storage temperature   | -30 ÷ +80 °C |



Humidity Protection

#### **Dimensions and weight**

Dimensions Weight

#### **CAN** bus interface

Galvanic separated Maximal CAN bus length Speed Nominal impedance Cable type for iS connection

#### **RS232** interface

Maximal distance Speed

#### I-LB

Voltage supply Consumption Operating temperature Mechanical dimensions: Interface to modem or PC Interface to controller

#### IG-IB

Voltage supply Consumption Mechanical dimensions: Interface to controller Interface to modem Interface to Ethernet Operating temperature Storage temperature

#### I-RBxx

Number of relays: Nominal voltage: Voltage range: Relay opens at: Electric / mechanic cycles: Operating temperature range: Maximal load:

(I-RBxx-231) Contacts protection:

#### IG-MTU

Primary voltage Ph-Ph Secondary voltage Ph-N Mechanical dimensions: Primary/secondary Phase shift Operating temperature 85% without condensation IP20

95x96x43 mm, DIN rail (35 mm) mounted 300g

200m up to 250kBd (depends on ECU type connected)  $0\Omega$  sted pair (shielded)

0m p to 19.2kbps (depends on ECU type connected)

-36V DC ,1A depend on supply voltage 30..+70°C 5 x 96 x 43 mm , DIN rail (35 mm) mounted S232, RS422, RS485, (USB – I-LB+ version) AN

-36V DC ,1A depend on supply voltage 5 x 96 x 43 mm , DIN rail (35 mm) mounted S232 or CAN S232 J45 (10baseT) 30..+70°C 30..+70°C

6 or 8 in sockets 4 VDC 6,8 – 36 VDC 0% of nominal voltage 00 000 / 10 000 000 40°C to 70°C 6 A resistive load at 24VDC 4 A inductive load at 24 VDC 2 A at 231VAC aristor 14DK390

x400 VAC / 50Hz (3x480 VAC / 60 Hz) x 230 V AC (3x277 VAC / 60 Hz), 5 VA 5 x 95 x 60 mm, DIN rail (35 mm) mounted 1° 30..+70°C

### Settings for INTELISYS NT Digital Paralleling Genset Controller.

#### RE: Woodcrest Interconnection Project

|                |                            |                  |                 |           |                            |           | Page 1/3   |
|----------------|----------------------------|------------------|-----------------|-----------|----------------------------|-----------|------------|
| Name           | Firmware ver.              | Application      | Date            | App. ver. | Filename                   |           |            |
| Woodcrest      | IS-NT-AFR-2.0 R:23.05.2012 | SPI              | 15/06/2015      | 2.0       | Roberts SPI 06-15-2015.ANT |           |            |
| _              |                            |                  |                 |           |                            |           |            |
| Group          | Name                       | Value            | Dimension       | Password  | Description                | Low limit | High limit |
| ProcessControl | Base load                  | 450              | kW              | 7         |                            | 0         | 600        |
| ProcessControl | Base PF                    | 1.00             |                 | 7         |                            | 0.60      | 1.20       |
| ProcessControl | Import load                | 0                | kW              | 7         |                            | -32000    | 32000      |
| ProcessControl | Import PF                  | 1.00             |                 | 7         |                            | 0.60      | 1.20       |
| ProcessControl | Load ctrl PtM              | BASELOAD         |                 | 7         |                            |           |            |
| ProcessControl | PF ctrl PtM                | BASEPF           |                 | 7         |                            |           |            |
| ProcessControl | Export limit               | DISABLED         |                 | 7         |                            |           |            |
| ProcessControl | ParallelEnable             | YES              |                 | 7         |                            |           |            |
| ProcessControl | Synchro enable             | FORWARD          |                 | 7         |                            |           |            |
| ProcessControl | #Neutral cont              | EACH             |                 | 7         |                            |           |            |
|                |                            |                  |                 |           |                            | •         |            |
| Group          | Name                       | Value            | Dimension       | Password  | Description                | Low limit | High limit |
| Basic settings | Nomin power                | <mark>450</mark> | <mark>kW</mark> | 7         |                            | 1         | 32000      |
| Basic settings | Nomin current              | 677              | A               | 7         |                            | 1         | 10000      |
| Basic settings | CT ratio prim              | 800              | A               | 7         |                            | 1         | 15000      |
| Basic settings | CT ratio sec               | /5A              |                 | 7         |                            |           |            |
| Basic settings | Im3/ErFICurCTp             | 800              | A               | 7         |                            | 1         | 15000      |
| Basic settings | Im3/ErFICurCTs             | /5A              |                 | 7         |                            |           |            |
| Basic settings | VT ratio                   | 1.00             | V/V             | 7         |                            | 0.10      | 500.00     |
| Basic settings | Vg InpRangeSel             | 277 V            |                 | 7         |                            |           |            |
| Basic settings | Vm VT ratio                | 1.00             | V/V             | 7         |                            | 0.10      | 500.00     |
| Basic settings | Vm InpRangeSel             | 277 V            |                 | 7         |                            |           |            |
| Basic settings | GenNomV                    | 277              | V               | 7         |                            | 80        | 34641      |
| Basic settings | GenNomVph-ph               | 480              | V               | 7         |                            | 130       | 60000      |
| Basic settings | MainsNomV                  | 277              | V               | 7         |                            | 80        | 34641      |
| Basic settings | MainsNomVph-ph             | 480              | V               | 7         |                            | 130       | 60000      |
| Basic settings | Nominal freq               | 60               | Hz              | 7         |                            | 45        | 65         |
| Basic settings | Nominal RPM                | 1200             | RPM             | 7         |                            | 100       | 4000       |

|               |                                                                                                            |        |           |          |                  |           | Page 2 / 3 |
|---------------|------------------------------------------------------------------------------------------------------------|--------|-----------|----------|------------------|-----------|------------|
| Group         | Name                                                                                                       | Value  | Dimension | Password | Description      | Low limit | High limit |
| Gener protect | Ishort                                                                                                     | 150    | %         | 7        | ANSI Device 50   | 100       | 500        |
| Gener protect | Ishort del                                                                                                 | 0.00   | S         | 7        |                  | 0.00      | 10.00      |
| Gener protect | 2Inom del                                                                                                  | 10.0   | S         | 7        | ANSI Device 51   | 0.0       | 600.0      |
| Gener protect | Gen >V BOC                                                                                                 | 110    | %         | 7        | ANSI Device 59   | 90        | 150        |
| Gener protect | Gen <v boc<="" td=""><td>90</td><td>%</td><td>7</td><td>ANSI Device 27</td><td>20</td><td>110</td></v>     | 90     | %         | 7        | ANSI Device 27   | 20        | 110        |
| Gener protect | Gen >V Sd                                                                                                  | 150    | %         | 7        | ANSI Device 59   | 50        | 150        |
| Gener protect | Gen V del                                                                                                  | 600.00 | S         | 7        |                  | 0.00      | 600.00     |
| Gener protect | Gen >f                                                                                                     | 102.0  | %         | 7        | ANSI Device 81-O | 98.0      | 150.0      |
| Gener protect | Gen <f< td=""><td>98.0</td><td>%</td><td>7</td><td>ANSI Device 81-U</td><td>20.0</td><td>102.0</td></f<>   | 98.0   | %         | 7        | ANSI Device 81-U | 20.0      | 102.0      |
| Gener protect | Gen f del                                                                                                  | 500.00 | S         | 7        |                  | 0.00      | 600.00     |
| Gener protect | Reverse power                                                                                              | 5      | %         | 7        | ANSI Device 32R  | 0         | 50         |
| Gener protect | ReversePwr del                                                                                             | 5.0    | S         | 7        |                  | 0.0       | 600.0      |
| Gener protect | EarthFaultCurr                                                                                             | 1500   | A         | 7        | ANSI Device 51N  | 0         | 10000      |
| Gener protect | EthFltCurr del                                                                                             | 3.0    | S         | 7        |                  | 0.0       | 600.0      |
| Gener protect | Gen V unbal                                                                                                | 10     | %         | 7        | ANSI Device 47   | 0         | 200        |
| Gener protect | Gen V unb del                                                                                              | 3.0    | S         | 7        |                  | 0.0       | 600.0      |
| Gener protect | Gen I unbal                                                                                                | 50     | %         | 7        | ANSI Device 46   | 0         | 200        |
| Gener protect | Gen I unb del                                                                                              | 3.0    | S         | 7        |                  | 0.0       | 600.0      |
|               |                                                                                                            |        |           | • •      |                  |           |            |
| Group         | Name                                                                                                       | Value  | Dimension | Password | Description      | Low limit | High limit |
| Mains protect | Mains >V MP                                                                                                | 110    | %         | 7        | ANSI Device 59   | 90        | 150        |
| Mains protect | Mains > V del                                                                                              | 0.50   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | Mains <v mp<="" td=""><td>90</td><td>%</td><td>7</td><td>ANSI Device 27</td><td>50</td><td>110</td></v>    | 90     | %         | 7        | ANSI Device 27   | 50        | 110        |
| Mains protect | Mains < V del                                                                                              | 0.30   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | Mains >>V MP                                                                                               | 120    | %         | 7        | ANSI Device 59   | 90        | 150        |
| Mains protect | Mains >> V del                                                                                             | 0.00   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | Mains < <v mp<="" td=""><td>80</td><td>%</td><td>7</td><td>ANSI Device 27</td><td>50</td><td>110</td></v>  | 80     | %         | 7        | ANSI Device 27   | 50        | 110        |
| Mains protect | Mains << V del                                                                                             | 0.00   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | Mains Avg>V MP                                                                                             | 110.0  | %         | 7        | ANSI Device 59   | 100.0     | 150.0      |
| Mains protect | Mains >f                                                                                                   | 102.0  | %         | 7        | ANSI Device 81-O | 98.0      | 150.0      |
| Mains protect | Mains >f Del                                                                                               | 0.50   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | Mains <f< td=""><td>98.0</td><td>%</td><td>7</td><td>ANSI Device 81-U</td><td>50.0</td><td>102.0</td></f<> | 98.0   | %         | 7        | ANSI Device 81-U | 50.0      | 102.0      |
| Mains protect | Mains <f del<="" td=""><td>0.30</td><td>S</td><td>7</td><td></td><td>0.00</td><td>600.00</td></f>          | 0.30   | S         | 7        |                  | 0.00      | 600.00     |
| Mains protect | FwRet break >U                                                                                             | 60.0   | S         | 7        |                  | 0.0       | 800.0      |
| Mains protect | FwRet break <u< td=""><td>60.0</td><td>S</td><td>7</td><td></td><td>0.0</td><td>800.0</td></u<>            | 60.0   | S         | 7        |                  | 0.0       | 800.0      |
| Mains protect | FwRet break >f                                                                                             | 60.0   | S         | 7        |                  | 0.0       | 800.0      |
| Mains protect | FwRet break <f< td=""><td>60.0</td><td>S</td><td>7</td><td></td><td>0.0</td><td>800.0</td></f<>            | 60.0   | S         | 7        |                  | 0.0       | 800.0      |
| Mains protect | FwRet break VS                                                                                             | 60.0   | s         | 7        |                  | 0.0       | 800.0      |

|                |                |               |           |          |                                      |           | Page 3/3         |
|----------------|----------------|---------------|-----------|----------|--------------------------------------|-----------|------------------|
| Mains protect  | AfMainsFIRun   | 60.0          | S         | 7        |                                      | 0.0       | 600.0            |
| Mains protect  | VectorS prot   | PARALLEL ONLY |           | 7        |                                      |           |                  |
| Mains protect  | VectorS limit  | 10            | 0         | 7        |                                      | 1         | 45               |
| Mains protect  | Mains V unbal  | 10            | %         | 7        | ANSI Device 47                       | 0         | 200              |
| Mains protect  | Mains Vunb del | 1.0           | S         | 7        |                                      | 0.0       | 600.0            |
|                |                |               |           | -        | -                                    | -         |                  |
| Group          | Name           | Value         | Dimension | Password | Description                          | Low limit | High limit       |
| Sync/Load ctrl | Voltage window | 10.0          | %         | 7        | ANSI Device 25 voltage match         | 0.0       | 100.0            |
| Sync/Load ctrl | GtoM AngleReq  | 0             | 0         | 7        | angle compensation for delta config. | -45       | 45               |
| Sync/Load ctrl | Phase window   | 10            | 0         | 7        | ANSI Device 25 angle match           | 0         | 90               |
| Sync/Load ctrl | Dwell time     | 0.3           | S         | 7        | ANSI Device 25                       | 0.0       | 25.0             |
| Sync/Load ctrl | Load ramp      | 180           | S         | 7        |                                      | 0         | 240              |
| Sync/Load ctrl | Load gain      | 10.0          | %         | 7        |                                      | 0.0       | 200.0            |
| Sync/Load ctrl | Load int       | 50            | %         | 7        |                                      | 0         | 100              |
| Sync/Load ctrl | RampStartLevel | 2             | %         | 7        |                                      | 0         | 100              |
| Sync/Load ctrl | GCB open level | 10            | %         | 7        |                                      | 0         | 100              |
| Sync/Load ctrl | GCB open del   | 240           | S         | 7        |                                      | 180       | 1800             |
| Sync/Load ctrl | Sync timeout   | NO TIMEOUT    | S         | 7        |                                      | 1         | 1800; NO TIMEOUT |

7

9; OFF

1

OFF

Sync/Load ctrl

Sync attempts



Woodcrest Submittal

# Section VI

### Control Panel and Breaker Panel







## Engine Control Panel



#### BOTTOM CONDUIT ENTRY AREA





Woodcrest Submittal

## Divider Page.

Page is Intentionally Blank







# Breaker Panel









Woodcrest Submittal

# Section VII

## **Description of Operation**





Project Name:

### Woodcrest Farm

Ogdensburg, NY

Document type:

Description of Equipment and Operation for Proposed New Interconnected Biogas Generation System.



#### Job ID#: 106WCF

#### I. Applications.

| А. | Parallel Export Operation. |
|----|----------------------------|
| В. |                            |
| C. |                            |

#### II. Notes.

- 1. Utility Status = Available (means all breakers and switches are closed so that utility power is available at the utility side of 52G1.)
- 2. The Equipment may only be operated by qualified professionals who have been adequately trained and authorized.

#### **III. System Components.**

| 52G  | Breaker to connect G1 to the Load Bus.                       |
|------|--------------------------------------------------------------|
| 52G1 | Electrically Operated Generator Intertie Breaker. (also GCB) |
| 52M  | Manually Operated Mains Breaker.                             |
| СР   | ComAp Intelisys NT Digital Paralleling Control Panel.        |
| DS-1 | 600A manually operated Disconnect Switch(s)                  |
| G1   | Bio-gas Fueled Generator.                                    |
| PR1  | M3410A Beckwith Utility Protection Relay.                    |



#### **IV. Operation Scenarios.**

- 1. Normal Parallel Operation: (Use drawing E200)
- A. To start G1 and begin Normal Parallel Operation the System Status must be according to Table 1, (see Note 1)

#### Table 1.

| Utility Status | PR1               | 52G1 | G1  |
|----------------|-------------------|------|-----|
| Available      | No Active<br>Trip | Open | Off |

- B. The Operator initiates G1 operation by selecting "Auto" operation either by remote dial in or via the HMI screen on the CP. (see Note 2)
- C. G1 Cranks > Starts > Ramps up to Operating Speed > Stabilizes > Ready for Load. (Table 2)

Table 2.

| Utility Status | PR1               | 52G1 | G1 |
|----------------|-------------------|------|----|
| Available      | No Active<br>Trip | Open | On |

- D. When G1 = Ready for Load: CP > Starts Sync Operation > Attains Sync Parameters > Close 52G1, supervised by PR1. (Table 3)
- E. When G1 is on-line the CP increases the output according to a programmable ramp until the load target setpoint is attained. The load target setpoint can be adjusted via an external analog input.

#### Table 3.

| Utility Status | PR1               | 52G1   | G1 |
|----------------|-------------------|--------|----|
| Available      | No Active<br>Trip | Closed | On |

- F. For a normal shutdown the Operator can select "Stop" operation either by remote dial in or via the HMI screen on the CP.
- G. The CP will > Ramp down G1 Output to near 0. > OPEN 52G1 > G1 cool down cycle > Shut down.
- H. System status returns to Table #1.
- I. G1 can be re-started by performing steps IV.1.B-D.



#### Sequence of Operation.

#### 2. Generator Fault Types:

- A. There are 3 different types of possible faults. When any type II or Type III fault is cleared it is followed by a 5 minute Time Delay before 52G1 can be re-closed. This is to ensure a minimum of 5 minutes between any re-closure attempts per IEEE-1547.
  - I. <u>Warning Fault</u>. Audio / Visual <u>Warning Alarms</u>. (Figure 4)
  - II. <u>BOC Fault</u>: Audio / Visual Alarms, Immediate <u>B</u>reaker <u>O</u>pen and subsequent Engine <u>C</u>ool Down. (Figure 5)
  - III. <u>SD Fault</u>: Audio / Visual Alarms, Immediate Breaker Open and immediate Engine <u>Shut</u> <u>D</u>own. (Figure 6)

Figure 4.







Figure 6.





#### 3. <u>Utility System Fault or Disturbance During Parallel Operation</u>:

- A. If the voltage, frequency, or current deviate from the parameters programmed in PR1 a trip signal will be issued by PR1. To trip, PR1 activates output O01 which OPENS contacts 1&2. (DWG# E400.1)
- B. The result of a trip signal by PR1 is a break in the supply voltage of the Undervoltage Trip Coil, (TC) When TC is deenergized for any reason 52G1 will trip. This is an inherent safety feature since a sudden loss of control power will trip the breaker and therefore isolate the generation facility from the mains. (DWG# E400.1)
- C. PR1 self-test contacts 6&7 are also wired in series to the trip circuit for an added measure of redundant protection. If the PR1 processor fails for any reason it will cause a trip. (DWG# E400.1)
- D. Any trip signal from PR1 or from the external trip input that operates relay K7 will result in a breaker trip and G1 shut down. (DWG# E400.1) See Table 4.
- E. After Utility Status returns to normal the Operator must reset the fault either by remote dial in or via the HMI screen on the CP. The CP will allow G1 to restart, after a minimum of 5 minutes of normal Utility Status, and the system will operate according to **IV. 1.** Normal Start and Parallel Operation:

#### Table 4.

| Utility Status | PR1               | 52G1 | G1  |
|----------------|-------------------|------|-----|
| Available      | No Active<br>Trip | Open | Off |



Woodcrest Submittal

# Section VIII

**Energization Plan** 





Energization Plan.

#### Woodcrest Farm Interconnection Project

Job ID#: 0136546 6-16-2015

#### I. Applicable Drawings.

**NOTE:** This document references the job drawings listed below and may reference components listed in the legend of a specified drawing which are not listed in the component list in Item III. It is important to use the drawings in conjunction with this document to gain a thorough understanding of the intended operation.

| Drawing # | Description              | <b>Revision</b> # | <b>Revision Date</b> |
|-----------|--------------------------|-------------------|----------------------|
| E100      | Master Legend            |                   | 6-16-15              |
| E200      | 1-Line Drawing           |                   | 6-16-15              |
| E201      | 1-Line Drawing for Loads |                   | 6-16-15              |
| E400.1    | Breaker Control Drawing  |                   | 6-16-15              |

#### **II.** System Components.

| 52G  | Breaker to connect G1 to the Load Bus.                       |
|------|--------------------------------------------------------------|
| 52G1 | Electrically Operated Generator Intertie Breaker. (also GCB) |
| 52M  | Manually Operated Mains Breaker.                             |
| СР   | ComAp Intelisys NT Digital Paralleling Control Panel.        |
| DS-1 | 600A manually operated Disconnect Switch(s)                  |
| G1   | Bio-gas Fueled Generator.                                    |
| PR1  | M3410A Beckwith Utility Protection Relay.                    |



#### Energization Plan.

#### **III. Energizing Sequence.**

1. <u>Utility System Energization</u> : (Use DWG# E200 unless otherwise noted)

**NOTE 1:** The following steps assume that the applicable building electrical inspections have been performed by the AHJ (Authority Having Jurisdiction), the equipment is grounded and all ungrounded conductors have been tested and confirmed to be ungrounded and have expected continuity. (No phases switched and no unexpected grounding.)

**NOTE 2**: The following steps assume that no part of the system has been energized. If the Main Service Panel has already been energized, begin at Item 2.F.

**NOTE: 3:** The following steps to be performed only by trained, qualified personnel, authorized by the entity listed at the beginning of each item. (PEC = Project Electrical Contractor. / MEG = Martin Energy Group. / UP = Utility Personnel.)

- A. PEC Confirm 52M (800 Amp) is OPEN. Confirmed\_\_\_\_\_
- B. PEC Confirm that all branch breakers in the 800 Amp Service Entrance Panel are OPEN. (E201) Confirmed\_\_\_\_\_
- C. PEC Confirm DS-1 is OPEN. Confirmed\_\_\_\_\_
- D. MEG confirm 52G1 is open and the close circuit is disabled by the jumper being removed at Engine Control Panel terminals TB1-42&43. (E400.1) Confirmed\_\_\_\_\_\_

E. MEG - confirm G1 is disabled (E-stop ON). Confirmed\_\_\_\_\_

F. UP - CLOSE "LINE PROTECTION" Equipment. Confirmed\_\_\_\_\_

G. UP - confirm expected voltage and frequency at the secondary taps of T1. Confirmed\_\_\_\_\_

Voltage A-B\_\_\_\_\_B-C\_\_\_\_C-A\_\_\_\_(Secondary Values) Frequency\_\_\_\_Phase Sequence: A-B-C\_\_\_\_\_A-C-B\_\_\_\_\_

NOTES:



- 2. <u>Woodcrest Farm System</u>: (Use DWG# E200 unless otherwise noted)
- A. PEC Confirm expected voltage and frequency at the primary connections of the Service Entrance Panel. Confirmed\_\_\_\_\_

Voltage A-B\_\_\_\_\_B-C\_\_\_\_C-A\_\_\_\_(Secondary Values) Frequency\_\_\_\_Phase Sequence: A-B-C\_\_\_\_\_A-C-B\_\_\_\_\_

- B. PEC Confirm Phase Sequence (Rotation) is correct for site equipment. Confirmed\_\_\_\_\_ CW\_\_\_\_
- C. PEC CLOSE 52M. Confirmed\_\_\_\_\_
- D. PEC Confirm expected voltage and frequency on the bus of the Service Entrance Panel. Confirmed\_\_\_\_\_

Voltage A-B\_\_\_\_\_ B-C\_\_\_\_\_ C-A\_\_\_\_ (Secondary Values) Frequency\_\_\_\_\_

E. PEC - CLOSE the remaining load breakers. After closing each breaker, and before closing another breaker, confirm the correct operation of all loads connected to the individual circuit. Breakers in the Service Entrance Panel are CLOSED and Loads operating correctly. Confirmed\_\_\_\_\_\_

List Exceptions (if any):

F. PEC - confirm expected voltage and frequency at the primary connections of DS-1. Confirmed\_\_\_\_\_

Voltage A-B\_\_\_\_\_B-C\_\_\_\_C-A\_\_\_\_(Secondary Values) Frequency\_\_\_\_Phase Sequence: A-B-C\_\_\_\_\_A-C-B\_\_\_\_\_

G. PEC - CLOSE DS-1. Confirmed\_\_\_\_\_

NOTES:



#### 3. Biogas Generator G1 System :

A. MEG - confirm expected voltage and frequency at the primary connections of 52G1. Confirmed\_\_\_\_\_

Voltage A-B\_\_\_\_\_B-C\_\_\_\_C-A\_\_\_\_(Secondary Values) Frequency\_\_\_\_Phase Sequence: A-B-C\_\_\_\_ A-C-B\_\_\_\_\_

B. MEG - Start G1in Manual Mode (52G1 is still OPEN) and confirm expected voltage and frequency at the secondary connections of 52G1. Confirmed\_\_\_\_\_\_

Voltage A-B\_\_\_\_\_B-C\_\_\_\_C-A\_\_\_\_(Secondary Values) Frequency\_\_\_\_Phase Sequence: A-B-C\_\_\_\_ A-C-B\_\_\_\_\_

- C. MEG monitor the sync scope on the HMI of the Intelisys NT controller and the sync scope in the software of PR1. Confirm, using a meter, that there is very low voltage potential between the primary and secondary terminals of 52G1 (all three phases) when the Intelisys NT controller and the PR1 protection relay show a synchronous condition. Confirmed
- D. MEG (with G1 not running) re-install the wire jumper in the 52G1 CLOSE circuit at Engine Control Panel terminals TB1-42&43. (E400. Confirmed\_\_\_\_\_\_
- E. MEG (with G1 not running) install a wire jumper in the 52G1 CLOSE circuit at 52G1 Panel terminals TB8-5&6. (E400. Confirmed\_\_\_\_\_\_
- F. At this point the system is energized and ready for the **Witness Test Procedure for the Woodcrest Farm** Interconnection Project.

End of Energization Procedure.

NOTES:


Woodcrest Submittal

# Section IX

**Test Procedures** 





Test Checklist.

### Woodcrest Farm Biogas Interconnection Project

Gen-Tec LLC Job ID#: 0136546

| Test # | Description                                                                                                                                                                                                                                                                                    | Check<br>box |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.     | Relay Test. (by authorized testing firm)<br>The relay testing firm will provide the relay test procedure and<br>report form.                                                                                                                                                                   |              |
| 2.     | Current Transformer Test. (by authorized testing firm, same as relay tester)<br>The relay testing firm will provide the CT test procedure and report form.                                                                                                                                     |              |
| 3.     | Potential Transformer Test. (if applicable)<br>(by authorized testing firm, same as relay<br>tester)<br>The relay testing firm will provide the PT test procedure and<br>report form.                                                                                                          |              |
| 4.     | Inspection by Authority Having Jurisdiction. (AHJ)                                                                                                                                                                                                                                             |              |
| 5.     | Energization Plan.                                                                                                                                                                                                                                                                             |              |
| 6.     | Commissioning Checklist.                                                                                                                                                                                                                                                                       |              |
| 7.     | Witness / Final Commissioning Test.<br>The inserted document is only a MEG commissioning test<br>sheet. The relay testing firm will provide the actual witness test<br>procedures and report forms, which will be the same as the<br>relay, CT, and PT tests above. PTs may not be applicable. |              |



Woodcrest Submittal

# Divider Page.

Page is Intentionally Blank





Page 1 of 1

#### PARALLELING SWITCHGEAR

| SWITCHGEAR MODEL NUMBER/DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IN SERVICE DATE                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| SERIAL NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |
| CUSTOMER JOB REF. NO.:<br>TECHNICIAN NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |
| TECHNICIAN NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |
| YOUR INITIALS = OK NA = NOT APPLICABLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |
| PHYSICAL INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |
| <ul> <li>Proper clearances for service/maintenance accessFront, _</li> <li>Switchgear equipped with correct enclosure for adequate provide weather. Enclosure istype. (Nema 3R forDoors and latches operated properly.</li> <li>Client has key(s) for door latches.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | _Sides,Rear<br>otection from elements of<br>r outdoor,etc.)                     |
| ELECTRICAL POWER INSTALLATION        Overcurrent and short-circuit protection between mains and         Ampere Frame:      , Trip setting/Fuse rating (amp)         Poles:      , Trip setting/Fuse rating (amp)         Poles:      , Trip setting/Fuse rating (amp)         Power cables, proper cabinet entry method, insulation protection of entry and all areas inside switchgear.        Adequate clearance on terminations/bare conductors.        Power cables, adequate rating for generator capacity. Generation capacity.        Power cables, phase sequences are same for each genset        Power cables, connections are tight and secure        Breaker covers, shields, lug shields are in place. | switchgear.<br>'<br>cted against damage at point<br>rator Nameplate Capacity kW |
| <ul> <li>ELECTRICAL CONTROL WIRES INSTALLATION</li> <li> Proper cabinet entry method, insulation protected against data areas inside switchgear.</li> <li> Interconnection completed; (genset to controls and terminal as shown on the drawings). Photos of these terminations a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         | mage at point of entry and all board interconnects are requested.               |
| OPERATING CHECKS    Phase rotation, Checked genset and utility.  Run unit in Manual and confirm synchronizing and voltage m  Parallel generator set, record operating data at intervals.  Test import/export control if required.  Simulate Utility failure to "utility monitor relay".  Utility witnessed test, approved, verbal or written.                                                                                                                                                                                                                                                                                                                                                                       | atching using 2 analog voltmeters.                                              |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |
| SIGNED/SIGNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /                                                                               |
| Gen-lec IIC Date Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date                                                                            |



Woodcrest Submittal

# Divider Page.

Page is Intentionally Blank





Commissioning Test Procedures.

#### **Woodcrest Farm Interconnection Project**

MEG Job ID#: 0136546

#### I. Application.

A. Parallel Export Operation.

#### **II. Reference Materials.**

| Item | Abr. / # | Description                         | Version / Revision                                        |
|------|----------|-------------------------------------|-----------------------------------------------------------|
| 1.   | IM       | Beckwith M-3410A Instruction Manual | http://www.beckwithelectric.co<br>m/products/m-3410a.html |
| 2.   | E200     | 1-line Drawing                      |                                                           |
| 3.   | E201     | 1-line Drawing for Loads            |                                                           |
| 4.   | E310.1   | 3-line Drawing, Voltage Sensing     |                                                           |
| 5.   | E311.1   | 3-line Drawing, Current Sensing     |                                                           |
| 6.   | E400.1   | Breaker Control Drawing             |                                                           |

#### **III.** System Components.

| 52G  | Breaker to connect G1 to the Load Bus.                       |
|------|--------------------------------------------------------------|
| 52G1 | Electrically Operated Generator Intertie Breaker. (also GCB) |
| 52M  | Manually Operated Mains Breaker.                             |
| СР   | ComAp Intelisys NT Digital Paralleling Control Panel.        |
| DS-1 | 600A manually operated Disconnect Switch(s)                  |
| G1   | Bio-gas Fueled Generator.                                    |
| PR1  | M3410A Beckwith Utility Protection Relay.                    |

#### IV. Notes.

**Note 1:** All the non-operating checkpoints of the Commissioning Checklist must be confirmed and documented before proceeding with the commissioning test procedures.

**Note 2:** The Energization Plan must be confirmed and documented before proceeding with the commissioning test procedures.

**Note 3:** The applicable Protection Relay settings will need tested and documented by an approved 3<sup>rd</sup> party using a test set, and following the Relay Test Procedures provided by the relay manufacturer.

**Note 4:** The parallel tests need to be done in conjunction with Witness Testing by the hosting utility, or after permission to operate in parallel.



#### V. Generator Operation Tests.

| Test 1:                                                                                                       | Test Purpose                         | Comments |      |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|------|
|                                                                                                               | Confirm start function of G1.        |          |      |
|                                                                                                               | Application                          |          |      |
| Initiate G1 operation by selecting "Auto" operation either by remote dial in or via the HMI screen on the CP. |                                      |          |      |
|                                                                                                               | Result                               |          | Fail |
|                                                                                                               | G1 starts and operates in Auto mode. |          |      |

| Test 2: | Test Purpose                                                                                                                                                                                                                                                                                                                                                          | Com  | ments |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|         | Confirm CP acknowledgement of G1run status.                                                                                                                                                                                                                                                                                                                           |      |       |
|         | Application                                                                                                                                                                                                                                                                                                                                                           |      |       |
|         | When the generator is running the GCB Enable output (O10) is energized<br>by the CP. This does not close the breaker but only closes a contact (K10,<br>11-14) in the series trip circuit that will allow 24 Vdc to energize the under<br>voltage Trip Coil (TC, De-energize to trip) if no other device in the series<br>circuit is declaring a fault. (DWG# E400.1) |      |       |
|         | Result                                                                                                                                                                                                                                                                                                                                                                | Pass | Fail  |
|         | CP output O10 activates, K10 relay energizes and Trip coil is energized when G1 attains "running" status                                                                                                                                                                                                                                                              |      |       |



| Test 3: | Test Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                               | Com  | ments |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|         | Confirm CP voltage and frequency control of G1.                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |
|         | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |
|         | Connect a Volt Meter, preferably an analog type, across the open terminals of phase A on 52G1. After the starting functions are successfully completed the CP will initiate a sync hunt where the frequency and voltage are driven into synchronism with the mains. When the CP shows a synchronized condition, confirm that there is < 20 Vac voltage potential across the open terminals of phase A on 52G1. Repeat the process for Phase B and Phase C. |      |       |
|         | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pass | Fail  |
|         | CP brings G1 into Synchronism with the Mains. There is < 20 Vac potential across any terminals of 52G1 when the CP declares a synchronized condition.                                                                                                                                                                                                                                                                                                      |      |       |

| Test 4: | Test Purpose                                                                                                                                                                                                                                                           | Comments |      |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
|         | Close 52G1 in synchronism, supervised by PR1. (Also see DTT section)                                                                                                                                                                                                   |          |      |
|         | Application                                                                                                                                                                                                                                                            |          |      |
|         | When Synchronism is attained the CP energizes its output #3 (O03) When O03 is ON it operates the relay K3. K3 11-14 contacts are closed resulting in a command to close 52-G1. This signal is supervised by Output #2 (sync check terminals 3-4) of PR1. (DWG# E400.1) |          |      |
|         | Result                                                                                                                                                                                                                                                                 | Pass     | Fail |
|         | CP brings G1 into Synchronism with the Mains. There is < 20 Vac potential across any terminals of 52G1 when the CP declares a synchronized condition.                                                                                                                  |          |      |



|         | Test Purpose                                                                                                                                                                                             |               |                |        | Com       | ments |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------|-----------|-------|
| Test 5: | Confirm proper parallel operation of G1.                                                                                                                                                                 |               |                |        |           |       |
|         | Application                                                                                                                                                                                              |               |                |        |           |       |
|         | When 52G1 is closed the CP will control the genset output to ascend a programmable load "ramp". The upper limit of the ramp is the nominal output capacity of the genset as noted on DWG# E200. (450 kW) |               |                |        |           |       |
|         | Result                                                                                                                                                                                                   |               |                |        | Pass      | Fail  |
|         | The CP drives G1 loading according                                                                                                                                                                       | to CP load ra | mp parameters. |        |           |       |
|         | Load Ramp Parameters:                                                                                                                                                                                    | Max kW        |                | = 100% | Ramp Time |       |

| Test 6: | Test Purpose                                                                                                                                                                                             | Comments |      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
|         | Confirm proper parallel operation of G1.                                                                                                                                                                 |          |      |
|         | Application                                                                                                                                                                                              |          |      |
|         | When 52G1 is closed the CP will control the genset output to ascend a programmable load "ramp". The upper limit of the ramp is the nominal output capacity of the genset as noted on DWG# E200. (450 kW) |          |      |
|         | Result                                                                                                                                                                                                   | Pass     | Fail |
|         | The CP drives G1 loading according to CP load ramp parameters.                                                                                                                                           |          |      |

### Notes:



#### VI. Simulated Utility Fault Test.

| Test 1: | Test Purpose                                                                                                                                                                                                                                                                                                                                              | Com                           | ments              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|
|         | Demonstrate that a Trip signal from PR1 trips 52G1.                                                                                                                                                                                                                                                                                                       |                               |                    |
|         | Application                                                                                                                                                                                                                                                                                                                                               |                               |                    |
|         | While G1 is operating in parallel, simulate a voltage or frequency deviation<br>by interrupting the sensing of any of the 3 phases. This can be done at the<br>test switches. If the voltage, frequency, or current deviate from the<br>parameters programmed in PR1 a trip signal (O01 terminals 1-2) will be<br>issued by PR1. (DWG# E310.1 and E400.1) |                               |                    |
|         | Result                                                                                                                                                                                                                                                                                                                                                    | Pass                          | Fail               |
|         | When PR1 Trip Output was activated 52G1tripped.                                                                                                                                                                                                                                                                                                           |                               |                    |
|         | Note: The result of any trip signal by PR1 is a break in the supply voltage of (TC) When TC is <u>de-energized</u> for any reason it will trip the breaker 52G1. (I                                                                                                                                                                                       | the Undervolta<br>DWG# E400.1 | ge Trip Coil,<br>) |

| Test 2: | Test Purpose                                                                                                                                                                                                                                                                                 | Com  | ments |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|--|
|         | Demonstrate that PR1 self-test contacts TRIP 52G1.                                                                                                                                                                                                                                           |      |       |  |
|         | Application                                                                                                                                                                                                                                                                                  |      |       |  |
|         | PR1 self-test contacts (terminals 6-7) are wired in series to the trip circuit<br>for an added measure of redundant protection. If the PR1 processor fails for<br>any reason it will cause a trip. (DWG# E400.1) While operating in parallel,<br>open the circuit at Test Switch 1, blade H. |      |       |  |
|         | Result                                                                                                                                                                                                                                                                                       | Pass | Fail  |  |
|         | When Test Switch 1 blade H is opened 52G1 trips immediately and a Utility Relay fault is declared in the CP.                                                                                                                                                                                 |      |       |  |



| Test 3: | Test Purpose                                                                                                                                                                                                                                                      | Com  | ments |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|         | Demonstrate that the external TRIP input TRIPS 52G1.                                                                                                                                                                                                              |      |       |
|         | Application                                                                                                                                                                                                                                                       |      |       |
|         | Any trip signal from the external trip input that operates relay K7 (terminals 11-12) will result in a breaker trip and G1 shut down. (DWG# GTAC106119-BC) Apply a jumper at terminals TB3-11&12 during G1 parallel operation to simulate an external TRIP input. |      |       |
|         | Result                                                                                                                                                                                                                                                            | Pass | Fail  |
|         | Terminals TB3-10&11 were closed during G1 parallel operation and 52G1 tripped immediately and an external trip fault was declared in the CP.                                                                                                                      |      |       |

| Test 4: | Test Purpose                                                                            | Comments |      |  |
|---------|-----------------------------------------------------------------------------------------|----------|------|--|
|         | Demonstrate that the Genset cannot be started with an active PR1 fault.                 |          |      |  |
|         | Application                                                                             |          |      |  |
|         | Apply a START command while PR1 has an active fault.                                    |          |      |  |
|         | Result                                                                                  | Pass     | Fail |  |
|         | A Start command was applied while a PR1 shutdown fault was active and G1 did not start. |          |      |  |



| Test 5: | Test Purpose                                                                                                                                                | Com  | ments |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|         | Demonstrate that the genset cannot be started for a minimum of 5 minutes after utility parameters return to normal.                                         |      |       |
|         | Application                                                                                                                                                 |      |       |
|         | Activate a PR1 fault. De-activate the PR1 fault and apply a START command.                                                                                  |      |       |
|         | Result                                                                                                                                                      | Pass | Fail  |
|         | Start command was applied during the 5 minute interim after utility parameters were returned to normal. G1 does not start until the 5 minutes have elapsed. |      |       |

### Notes:

Date: / /

Commissioning Technician Signature: X\_\_\_\_\_

Utility Representative Signature: X\_\_\_\_\_\_

Notes:



Woodcrest Submittal

# Section X

## System Electrical Schematic Diagrams



| DEVICE        | LEGEND                                  | IPM     |                           |
|---------------|-----------------------------------------|---------|---------------------------|
| 16/8          | DIGITAL I/O MODULE                      | LPR     | LUBE PUMP RELAY           |
| 52G1          | GENERATOR PARALLELING BREAKER           | LPS     | LUBE_PUMP_STARTER         |
| 86            | MANUAL RESET LOCKOUT RELAY              | LS1-4   | INTERNAL BREAKER LIM      |
| ABC           | AUTEMATIC BATTERY CHARGER               | MAP     | MANIFOLD AIR PRESSUR      |
| AFR           | AIR FUEL RATIO CONTROLLER               | MAT     | MANIFOLD AIR TEMPERA      |
| A08           | 8 ANALOG DUTPUTS                        | MDS     | MANUAL DISCONNECT SW      |
| BH            | BLOCK HEATER                            | MMS     | MANUAL MOTOR STARTER      |
| BHC           | BLOCK HEATER CONTACTOR                  | MPR     | MAINS PROTECTION REL      |
| BPS           | BLOCK HEATER PUMP STARTER               | MS      | MOTOR STARTER             |
| CC            |                                         | UC      | UPEN CUIL                 |
| EK1           | LP / NG FUEL SULENUID VALVE             | UH      | UIL HEATER DELAY          |
| EK2           | START SULENULD                          |         | UIL HEATER RELAT          |
| EK4           |                                         | PP3     | BASI FR BE1-59N GROUN     |
| ES ES         | EMERGENCY STOP SWITCH                   | RES     | REMOTE EMERGENCY STO      |
| ES10          | HIGH INTAKE VACUUM WARNING              | RTB     | RAD TERMINAL BLOCK        |
| ES11          | LOW DIL PRESSURE SHUTDOWN               | SDS     | SERVICE DISCONNECT S      |
| ES12          | HIGH DIL PRESSURE SHUTDOWN              | TB1     | GENSET & BREAKER INT      |
| ES13          | HIGH WATER TEMPERATURE SHUTDOWN         | ТВ2     | DC POWER DISTRIBUTIO      |
| ES14          | LOW WATER FLOW SHUTDOWN                 | TB3     | UTILITY RELAY INTERFA     |
| ES15          | LOW WATER LEVEL SHUTDOWN                | TB4     | BREAKER PANEL TERMIN      |
| ES16          | HIGH AFTER COOLER TEMPERATURE SHUTDOWN  | TC      | TRIP COIL                 |
| ES17          | HIGH DIL TEMPERATURE SHUTDOWN           | THC     | THERMAL CONTACT           |
| ES18          | LOW GAS PRESSURE SHUTDOWN               | TS1-2   | TEST SWITCH #1 & #2       |
| ES19          | HIGH GAS PRESSURE SHUTDOWN              | VFD     | VARIABLE FREQ DRIVE       |
| ES20          | LOW ENGINE WATER PRESSURE               | WPR     | WATER PUMP STARTER        |
| ES51          | LUW AFTER CUULER CIRCUIT WATER PRESSURE |         | WATER PUMP STARTER        |
| + 1-20        | FUSE, BLADE ITPE IN CUNTRUL CABINET     | INTELIS | VS INDUTS / OUTDUTS       |
| GC            |                                         | INTELIS | 13 1010137 0011013        |
| GE1-6         | BLADE TYPE FUSES ON GENSET              | — I01   | GCB FEEDBACK INPUT        |
| GF7           | BATTRY NEG. FUSE ON GENSET              | - 102   | MCB FEEDBACK INPUT        |
| GFV           | GENERATOR FIELD VOLTAGE SENSOR          | - 103   | GCB TRIPPED INPUT         |
| GPR           | GENERATOR PROTECTION RELAY              |         | DEMOTE START (STOR        |
| IM            | IGNITION MODULE                         | - 105   | ITTI ITY DELAY TOTO INDUT |
| IS BB         | INTELISYS NT GENSET CONTROL             | - 107   |                           |
| IS DS         | INTELISYS NT DISPLAY SCREEN             | - 108   | EXTERNAL TRIP             |
| К1            | START RELAY                             | - 109   | DTT TRIP                  |
| кг            | IGNITION RELAY                          | — I10   | HIGH INTAKE VACUUM SHUT   |
| кз            | CLOSE GCB RELAY                         | — m     | LOW DIL PRESSURE SHUTDO   |
| К4            | LP GAS RELAY                            | - 112   | HIGH DIL TEMP/ HI DIL PRE |
| К5            | BID-GAS RELAY                           | — 113   | HIGH WATER TEMP. SHUTDOW  |
| K6            | EXTENDED IGNITION RELAY                 | — I14   | LOW DIL LEVEL SHUTDOWN    |
| K/            | EXTERNAL TRIP RELAY                     | — 115   | LOW COOLANT LEVEL SHUT    |
| K8            | GUB CLUSED RELAT                        | — I16   | HIGH INTAKE TEMP. SHUTDO  |
| K9            | MUB UPEN (TRIP BIPASS) RELAT            |         |                           |
| K10           |                                         | 001     | START DUTPUT              |
| K12           |                                         | - DOS   | IGNITION DUTPUT           |
| K13           | DK TD CLOSE GCB RELAY                   | - 003   | CLOSE GCB DUTPUT          |
| КЗ1           | ALARM HORN RELAY                        | - 004   | LP GAS DUTPUT             |
| кзг           | SPARE                                   | - 005   | BID-GAS DUTPUT            |
| кзз           | IDLE RELAY                              | - 006   | ALARM HURN DUTPUT         |
| КЗ4           | SPARE                                   | - 007   | LUBE PUMP DUTPUT          |
| КЗ5           | EGS-02 RESET RELAY                      | - 008   | IDLE DUIPUI               |
| КЗ6           | UTILITY PROTECTION TRIP RELAY           | П10     | READY FOR LOAD DUTPUT     |
| КЗ7           | SYNC SIGNAL RELAY                       | - 011   | START VED DUTPUT          |
| кзв           | HELLENDS FAULT                          | - 012   | SPARE DUTPUT              |
| КЗ9           | HELLENDS ALARM                          | - 013   | EGS-02 RESET DUTPUT       |
| K40           | BLOCK HEATER RELAY                      | - 014   | TURN ON BLOCK HEATER      |
| K44           | SWITCH AUX 1 RELAY                      | - 015   | SPARE DUTPUT (NDT USED)   |
| K45           | SWITCH AUX 2 RELAY                      | - 016   | CLOSE MCB DUTPUT (OPTION  |
| K51           | WARNING STRUBE LIGHT                    |         |                           |
| KJC<br>K71-75 |                                         |         |                           |
|               |                                         |         |                           |
|               |                                         |         |                           |
|               |                                         |         |                           |
|               |                                         |         |                           |
|               |                                         |         |                           |
|               |                                         |         |                           |

\_\_\_\_ LS1-4 \_\_\_\_ INTERNAL BREAKER LIMIT SWITCHES \_\_\_\_ MANIFOLD AIR PRESSURE SENSOR

\_\_\_\_ MANUAL DISCONNECT SWITCH

\_\_\_\_ MAINS PROTECTION RELAY

\_\_\_ PIN & SLEEVE CONNECTORS

\_\_\_\_ GENSET & BREAKER INTERFACE

\_\_\_\_ BREAKER PANEL TERMINAL STRIP

\_\_\_\_ REMOTE EMERGENCY STOP

\_\_\_\_ UTILITY RELAY INTERFACE

\_\_\_\_ SDS \_\_\_\_ SERVICE DISCONNECT SWITCH

HIGH INTAKE VACUUM SHUTDOWN INPUT

LOW DIL PRESSURE SHUTDOWN INPUT

HIGH DIL TEMP/ HI DIL PRESSURE

LOW DIL LEVEL SHUTDOWN INPUT

HIGH WATER TEMP. SHUTDOWN INPUT

LOW COOLANT LEVEL SHUTDOWN INPUT

HIGH INTAKE TEMP. SHUTDOWN INPUT

CLOSE MCB DUTPUT (OPTIONAL)

\_\_\_\_ MANIFOLD AIR TEMPERATURE SENSOR

\_\_\_\_ MANUAL MOTOR STARTER/PROTECTOR

\_\_\_\_ BASLER BE1-59N GROUND OVERVOLTAGE

|      | INTERFACE TERMINAL BOARD                      |     |
|------|-----------------------------------------------|-----|
|      | T.D.1                                         |     |
|      |                                               |     |
|      | 2 BATTERY NEG. DUTPUT                         |     |
|      | 3 BATTERY NEG. TO CH4 MONITOR                 |     |
|      | 4 CH4 VALUE SIGNAL                            |     |
|      | 6 BATTERY PUS. TO DIGESTER PRES SENSOR        |     |
|      | 7 - 4-20 mA INPUT FROM DIGESTER PRES. SENSOR  |     |
|      | 8 CANBUS COMMON                               |     |
|      | 9 CANBUS HIGH                                 |     |
|      |                                               |     |
|      | 12 ANA. DUT SIG. SPARE (4-20 mA)              |     |
|      | 13 ANA. DUT COM. SPARE                        |     |
|      | 14 ANA. SHIELD                                |     |
|      | 15 START (SPARE) VFD (DRY CONTACT DUTPUT)     |     |
| REL. | 17 SPARE ANALOG INPUT                         |     |
|      | 18 - SPARE ANALOG INPUT COM                   |     |
|      | 19 — ANA. DUT SIG. TO GAS BLOWER (4-20 mA)    |     |
|      | 20 ANA. DUT COM. TO GAS BLOWER                |     |
|      | 22 ANA. IN SIG. FROM GAS BLOWER VED (4-20 MA) |     |
|      |                                               |     |
|      | 24 REMUTE START CORT CONTACT INPOT            |     |
|      | START GAS BLOWER VED (DRY CONTACT DUTPUT)     |     |
|      | 25 SPARE                                      |     |
|      | 28 - CLOSE SIGNAL TO BREAKER                  |     |
|      | 29 - DPEN SIGNAL TO BREAKER                   |     |
|      | 30 BATTERY PDS. TO BREAKER                    |     |
|      | 32 BATTERY NEG. TO BREAKER                    |     |
|      | 33 - BREAKER CLOSED SIGNAL FROM BREAKER       |     |
|      | 34 BREAKER TRIPPED SIGNAL FROM BREAKER        |     |
|      | 35 - MCB FEEDBACK DRY CONTACT                 |     |
|      |                                               |     |
|      | 38 - CAN 2 HIGH                               |     |
|      | 39 CAN 2 LOW                                  |     |
|      | 40 CAN 2 SHIELD                               |     |
|      | 42                                            |     |
|      | 43 EXTERNAL INHIBIT CLOSE CONTACT             |     |
|      | 44                                            |     |
|      |                                               | _   |
|      | 47 SPARE DRT CUNTACT (DOTPOT)                 |     |
|      |                                               |     |
|      | 50 SPARE                                      |     |
|      | 51 — BATTERY POS. TO RAD CONTROL BOX          |     |
|      | 52 BATTERY NEG. TO RAD CONTROL BOX            |     |
|      | 53 CANBUS CLIMMUN                             |     |
|      | 55 — CANBUS L                                 |     |
|      | 56 — CANBUS SHEIELD                           |     |
|      | 57 SPARE ANALOG DUT SIGNAL                    |     |
|      | 59 - SPARE ANALOG DUT SHIELD                  |     |
|      | 60 - SPARE ANALOG IN SIGNAL                   |     |
|      | 61 SPARE ANALOG IN COMMON                     |     |
|      | 63 ENMET SIGNAL COMMON                        |     |
|      | 64 HIGH CH4 LEVEL WARNING FROM ENMET          |     |
|      | 65 — HIGH CH4 LE∨EL SHUTDDWN FROM ENMET       |     |
|      | 66 24V POS. TO ROOM TEMP SENSOR               |     |
|      | 68 SPARE                                      |     |
|      | 69 — SPARE                                    |     |
|      | 70 SPARE                                      |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               |     |
|      |                                               | kп  |
|      |                                               | H.  |
|      |                                               | 1   |
|      |                                               | 2   |
|      |                                               | 113 |







| VD. | REVISIONS DATE | BY |                                                                                          | PROJECT  | Woodcrest Da       | airy                |
|-----|----------------|----|------------------------------------------------------------------------------------------|----------|--------------------|---------------------|
| 1   |                |    | MARIN                                                                                    | LOCATION | 326 County         | Rt 28               |
| 2   |                |    | ENERGY GROUP                                                                             |          | Ogdensburg,        | NY 13669            |
| 3   |                |    | 39411 Excelsior Dr<br>Letham MO 65050                                                    | DESC.    | 1-ĽINE SCHEMA      | TIC FOR LOADS       |
| 4   |                |    | 660-458-7200                                                                             | JOB ID   | 0136546            | QUOTE NO. MGG - 712 |
| 5   |                |    | UNLESS OTHERVISE SPECIFIED DIMENSIONS ARE IN INCHES.                                     | SCALE    | NONE               | date 6-16-15        |
| 6   |                |    | du nut scale. Drawing supersedes all previdus drawings with t<br>The same drawing number | drawn by | JOH CHECKED BY CNS | dwg#. E201          |





![](_page_126_Figure_0.jpeg)

![](_page_127_Figure_0.jpeg)

# E420.1

![](_page_128_Figure_1.jpeg)

| ND. | REVISIONS DATE | BY |                                                                                            | PROJECT  | Woodcrest Da       | airy                |
|-----|----------------|----|--------------------------------------------------------------------------------------------|----------|--------------------|---------------------|
| 1   |                |    |                                                                                            | LOCATION | 326 County         | Rt 28               |
| 2   |                |    |                                                                                            |          | Ogdensburg,        | NY 13669            |
| 3   |                |    | 39411 Excelsior Dr                                                                         | DESC.    | EXCITATION ŠY      | STEM SCHEMATIC      |
| 4   |                |    | 660-458-7200                                                                               | JOB ID   | 0136546            | QUOTE NO. MGG - 712 |
| 5   |                |    | UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES.                                       | SCALE    | NONE               | DATE 6-16-15        |
| 6   |                |    | 1 DU NUT SLALE, DRAWING SUPERSEDES ALL PREVIDUS DRAWINGS WITH T<br>THE SAME DRAWING NUMBER | DRAWN BY | JOH CHECKED BY CNS | DWG#. E420,1        |

![](_page_129_Figure_0.jpeg)

# MARATHON ELECTRIC GENERATORS

## **TYPICAL SUBMITTAL DATA**

MODEL : <u>574 Frame 6 Pole</u>

![](_page_130_Picture_3.jpeg)

Submittal Data: 480Volts\*, 560kW, 700kVA, 0.8P.F., 1200RPM, 60Hz, 3Phase

| Kilowatt ra | tings at              | 1200RPM           | 60 Hertz 12 LEADS |                               |                      | ADS Standard 3 phase |                               |                      |                   |
|-------------|-----------------------|-------------------|-------------------|-------------------------------|----------------------|----------------------|-------------------------------|----------------------|-------------------|
| kW (kVA)    |                       | 3 Phase           |                   | 0.8 Power                     | Factor               |                      | Dripproof o                   | or Open Enc          | losure            |
|             |                       |                   |                   | Class F                       |                      |                      |                               | Class H              |                   |
| Voltage*    | 80º C ①<br>Continuous | 90º C ①<br>Lloyds | 95º C ①<br>ABS    | 105º C<br>British<br>Standard | 105º C<br>Continuous | 130º C<br>Standby    | 125º C<br>British<br>Standard | 125º C<br>Continuous | 150° C<br>Standby |
| 480/240     |                       |                   |                   |                               | 560(700)             |                      |                               |                      |                   |

① Rise by resistance method, Mil-Std-705, Method 680.1b.

British Standard Rating per BS 5000

| Submittal     | Data: 480Volts*, 560kW, 700kV        | A, 0.8P.F., 1200F     | RPM, 60Hz,    | 3Phase ST                   | D. CONNECTION                |
|---------------|--------------------------------------|-----------------------|---------------|-----------------------------|------------------------------|
| Mil-Std-70    | 5B                                   |                       | Mil-Std-70    | 5B                          |                              |
| Method        | Description                          | Value                 | Method        | Description                 | Value                        |
| 301.1b        | Insulation Resistance                | >1.5 Meg              | 505.3b        | Overspeed                   | 1500 RPM                     |
| 302.1a        | High Potential Test                  | _                     | 507.1c        | Phase Sequence CCW-OD       | DE ABC                       |
|               | Main Stator                          | 2160 Volts            | 508.1c        | Voltage Balance, L-L or L-N | N 0.20%                      |
|               | Main Rotor                           | 1500 Volts            | 601.4a        | L-L Harmonic Maximum - T    | otal 5.0%                    |
|               | Exciter Stator                       | 1500 Volts            |               | (Distortion Factor)         |                              |
|               | Exciter Rotor                        | 1500 Volts            | 601.4a        | L-L Harmonic Maximum - S    | Single 3.0%                  |
|               | PMG Stator                           | NS**                  | 601.1c        | Deviation Factor            | 5.0%                         |
| 401.1a        | Stator Resistance, Line to Line      |                       |               | TIF (1960 Weightings)       | < 50                         |
|               | High Wye Connection                  | 0.006782 Ohms         |               | THF (IEC, BS & NEMA W       | eightings < 2 %              |
|               | Rotor Resistance                     | 2.005 Ohms            |               |                             | 5 5                          |
|               | Exciter Stator                       | 21.20hms              |               |                             |                              |
|               | Exciter Rotor                        | 0.145Ohms             |               |                             |                              |
|               | PMG Stator                           | NS**                  |               |                             |                              |
| 410.1a        | No Load Exciter Field Amps           | 0.73 A DC             |               |                             |                              |
|               | at 240/480 Volts Line to Line        |                       |               | Additional Prototype Mil-   | Std Methods                  |
| 420.1a        | Short Circuit Ratio                  | 0.778                 |               | are Available on Rec        | quest.                       |
| 421.1a        | Xd Synchronous Reactance             | 2 621 p.u.            |               | Generator Frame             | 574                          |
| 121114        |                                      | 2.021 p.d.            |               |                             | MAGNAMAX                     |
| 422 1a        | X2 Negative Sequence React           | 0 090 n u             |               | Insulation                  | Class H                      |
| 422.10        |                                      | 0.000 p.u.            |               | Coupling                    | Double Bearing               |
| 423 1a        | X0 Zero Sequence Reactance           | 0.067 p.u             |               | Amortisseur Windings        | Full                         |
| 120.14        |                                      | 0.007 p.u.            |               | Excitation Ext. Voltage R   | Regulated, Brushless         |
| 425 1a        | X'd Transient Reactance              | 0 119 р.ц             |               | Voltage Regulator           | DVR2000F+                    |
| 420.10        |                                      | 0.110 p.u.            |               | Voltage Regulation          | 0.25%                        |
| 426 1a        | X"d Subtransient Reactance           | 0 091 n u             |               | voltage regulation          | 0.2070                       |
| 420.10        |                                      | 0.001 p.u.            |               |                             |                              |
|               | Xg Quadrature Synch, React.          | N/A                   |               | Cooling Air Volume          | 1122 CFM                     |
|               |                                      |                       |               |                             | •                            |
| 427.1a        | T'd Transient Short Circuit          |                       |               | Heat rejection rate         | 2166 Btu's/min               |
|               | Time Constant                        | 0.237 sec.            |               |                             |                              |
| 428.1a        | T''d Subtransient Short Circuit      |                       |               | Full load current           | 947.2 amps                   |
|               | Time Constant                        | 0.097 sec.            |               |                             | • · · · <b>-</b> • · · · · • |
| 430.1a        | T'do Transient Open Circuit          |                       |               | Minimum Input hp required   | 896.8                        |
| loona         | Time Constant                        | 2.698 sec.            |               | Efficiency at ra            | ted load : 94.3%             |
| 432.1a        | Ta Short Circuit Time                | 2.000 0001            |               | ,                           |                              |
| 102110        | Constant of Armature Winding         | 0.018 sec.            |               | Full load torque            | 3920 Lb-ft                   |
|               | g and a set an and a set an an ag    |                       |               |                             |                              |
|               |                                      |                       |               |                             |                              |
| (3) Excitatio | n support system or PMG required     | to sustain short circ | uit currents. | 0 Dat                       | ta rev. 06/01/92             |
| * Voltages re | efer to wye (star) connection, unles | s otherwise specifie  | d.            | Ve                          | ersion: 2015.06              |

\*\* Not supplied as standard equipment.

![](_page_131_Picture_1.jpeg)

### Sage Integral Prime Insertion Style, 115VAC Power

### Specifications

#### Wetted Parts: Process Temperature: Pressure Rating: Accuracy: Repeatability:

316L SS Wetted parts, C267 Hastelloy Options Available Standard -40° to 200°F, Optional to 300° F and 450° F 500psig, 1000psig Optional +/- ½% of Full Scale +/- 1% of Reading 0.2% Outputs:

#### Digital Communication: User Supplied Power: Enclosure: Electronics Temp Rating:

4-20mA (Flow), 24VDC Pulse (Total) Modbus RS485/RTU 115VAC (100-230V~, 50/60Hz) Nema 4, Powder Coated Aluminum -40° to 150° F (-40° to 66° C)

![](_page_131_Figure_9.jpeg)

![](_page_131_Figure_10.jpeg)

![](_page_131_Figure_11.jpeg)

![](_page_132_Picture_1.jpeg)

Sage Remote Prime In-Line Style With NPT End Connections, 115VAC Power

### Specifications

#### Wetted Parts: Process Temperature: Pressure Rating: Accuracy: Repeatability:

316L SS Wetted parts, C267 Hastelloy Options Available Standard -40° to 200°F, Optional to 300° F and 450° F 500psig, 1000psig Optional +/- ½% of Full Scale +/- 1% of Reading 0.2% Outputs:

#### Digital Communication: User Supplied Power: Enclosure: Electronics Temp Rating:

4-20mA (Flow), 24VDC Pulse (Total) Modbus RS485/RTU 115VAC (100-230V~, 50/60Hz) Nema 4, Powder Coated Aluminum -40° to 150° F (-40° to 66° C)

![](_page_132_Figure_9.jpeg)

![](_page_132_Figure_10.jpeg)

## SHARK® 100 MULTIFUNCTION POWER AND ENERGY METER Bevenue Grade

![](_page_133_Picture_1.jpeg)

#### **Features**

 0.2% Class Energy and Demand Metering

New Ethernet TCP/IP Option

- Measurements including Voltage, Current, Power, Frequency, Energy, etc.
- Optional KYZ Pulse and Standard IrDA Port
- Power Quality Measurements (%THD and Alarm Limits)
- V-Switch<sup>™</sup> Technology Field Upgrade without Removing Installed Meter
- Large Bright Red LED Display
- % of Load Bar for Analog Meter Perception
- Optional RS485 Modbus and DNP 3.0
   Protocols
- Optional 100BaseT Ethernet
- Fits Both ANSI and DIN Cut-Outs
- Available in a Transducer-Only Version

#### **Applications**

- Utility Metering
- Commercial Metering
- Substations
- Industrial Metering

#### Introduction

Electro Industries introduces one of the industry's highest performance revenue grade panel meters. Based on an all new platform, this low cost meter significantly outperforms other devices many times its price. This unit is perfect for new metering applications and as a simple replacement of existing analog meters. The Shark®

• Power Generation

Wh

VAh

Wh Pulse

MEGA

SHARK

- Campus Metering
- Submetering
- Analog Meter Replacement

meter excels in metering energy accurately, exceeding ANSI C12.20 (0.2%) and IEC 62053-22 (0.2%) energy measurement standards. The unit utilizes high speed DSP technology with high resolution A/D conversion to provide revenue certifiable accuracy for Utility Billing, Substation Metering, Submetering and Critical Metering applications.

Shark® 100

Meter/Transducer

### High Performance and Economical Pricing for High Volume Deployment

![](_page_133_Picture_27.jpeg)

Electro Industries/GaugeTech The Leader in Power Monitoring and Smart Grid Solutions

![](_page_133_Picture_29.jpeg)

www.electroind.com

#### **Superior Accuracy and Virtual Upgrade Switches**

#### V-Switch<sup>™</sup> Technology

The Shark® 100 meter is equipped with EIG's exclusive V-Switch<sup>™</sup> technology. This technology allows users to upgrade and add features as needed by using communication commands, even after the meter is installed.

#### Available V-Switches:

- V-Switch 1 Volts and Amps Meter Default
- V-Switch 2 Volts, Amps, kW, kVAR, PF, kVA, Freq
- V-Switch 3 Volts, Amps, kW, kVAR, PF, kVA, Freq, kWh, kVAh, kVARh and DNP 3.0
- V-Switch 4 Volts, Amps, kW, kVAR, PF, kVA, Freq, kWh, kVAh, kVARh, %THD Monitoring, Limit Exceeded Alarms and DNP 3.0

#### **Traceable Watt-Hour Test Pulse for Accuracy Verification**

The Shark® 100 device is a traceable revenue meter. It contains a utility grade test pulse allowing power providers to verify and confirm that the meter is performing to its rated accuracy. This is an essential feature required of all billing grade meters.

#### **Additional Features Include:**

- Utility Block and Rolling Average Demand
- Adjustable Demand Profiles
- Max and Min Available on Most Other Parameters
- Voltage Provides Instantaneous Max and Min for Surge and Sag Limits

#### **Advanced Communication Capability with IrDA Interface**

The Shark® 100 meter provides two independent communication ports with advanced features.

#### **Back Mounted Communication Port with KYZ Pulse**

- RS485 (Option 485P) This port allows RS485 communication using Modbus or DNP 3.0 Protocols. Baud rates are from 9,600 to 57,600.
- KYZ Pulse In addition to the RS485, the meter also includes a KYZ pulse mapped to positive energy. This is a fixed energy pulse. Pulse values are:

| Voltage Level | Class 10 Models | Class 2 Models |
|---------------|-----------------|----------------|
| Below 150V    | 0.2505759630    | 0.0501151926   |
| Above 150V    | 1.0023038521    | 0.2004607704   |

#### **Optional 10/100BaseT Ethernet**

Ethernet (Option INP10) – 10/100BaseT Ethernet with Modbus TCP protocol.

| Measured<br>Parameters | Accuracy %<br>of Reading | Display Range                |
|------------------------|--------------------------|------------------------------|
| Voltage L-N            | 0.1%                     | 0-9999 Scalable V or kV      |
| Voltage L-L            | 0.1%                     | 0-9999 V or kV Scalable      |
| Current                | 0.1%                     | 0-9999 Amps or kAmps         |
| +/- Watts              | 0.2%                     | 0-9999 Watts, kWatts, MWatts |
| +/-Wh                  | 0.2%                     | 5 to 8 Digits Programmable   |
| +/-VARs                | 0.2%                     | 0-9999 VARs, kVARs, MVARs    |
| +/-VARh                | 0.2%                     | 5 to 8 Digits Programmable   |
| VA                     | 0.2%                     | 0-9999 VA, kVA, MVA          |
| VAh                    | 0.2%                     | 5 to 8 Digits Programmable   |
| PF                     | 0.2%                     | +/- 0.5 to 1.0               |
| Frequency              | 0.01 Hz                  | 45 to 65 Hz                  |
| %THD                   | 5.0%                     | 0 to 100%                    |
| % Load Bar             | 1-120%                   | 10 Digit Resolution Scalable |

Note: Typical results are more accurate. Applies to 3 Element WYE and 2 Element Delta Connections. Add 0.1% of Full Scale plus 1 digit to Accuracy specs for 2.5 Element connections.

| Measured Values   | <b>Real-Time</b> | Avg | Max | Min |
|-------------------|------------------|-----|-----|-----|
| Voltage L-N       | •                |     | •   | •   |
| Voltage L-L       | •                |     | •   | •   |
| Current Per Phase | •                | •   | •   |     |
| Watts             | •                | •   | •   | •   |
| VAr               | •                | •   | •   | •   |
| VA                | •                | •   | •   | •   |
| PF                | •                | •   | •   | •   |
| +Watt-hr          | •                |     |     |     |
| -Watt-hr          | •                |     |     |     |
| Watt-hr net       | •                |     |     |     |
| +VAR-hr           | •                |     |     |     |
| -VAR-hr           | •                |     |     |     |
| VAR-hr net        | •                |     |     |     |
| VA-hr             | •                |     |     |     |
| Frequency         | •                |     | •   | •   |
| %THD              | •                |     | •   | •   |
| Voltage Angles    | •                |     |     |     |
| Current Angles    | •                |     |     |     |
| % of Load Bar     | •                |     |     |     |

![](_page_134_Picture_27.jpeg)

#### **Front Mounted IrDA Communication**

Uniquely, the Shark® meter also has an optical IrDA port, allowing the unit to be set up and programmed using a remote laptop PC without need for a communication cable. To configure the meter, just point at it with an IrDA-equipped PC.

#### **Rugged and Safe Voltage and Current Inputs**

The Shark® 100 meter is ruggedly designed for harsh electrical applications in both high voltage and low voltage power systems. This is especially important in Power Generation, Utility Substation and Critical User applications. The structural and electrical design of this meter was developed based on the recommendations and approval of many of our utility customers.

#### **High Isolation Universal Voltage Inputs**

Voltage inputs allow measurement of up to 416 Volts Line to Neutral and 721 Volts Line to Line. This insures proper meter safety when wiring directly to high voltage systems. One unit will perform to specification on 69 Volt, 120 Volt, 230 Volt, 277 Volt and 347 Volt power systems.

#### Short Circuit Safe Current Inputs

Current inputs use a unique dual input method:

- Method One CT Lead Pass Through. The CT Lead passes directly through the meter without any physical termination on the meter. This insures that the meter cannot be a point of failure on the CT circuit. This is preferable to utility users when sharing relay class CTs. No Burden is added to the secondary CT circuit.
- Method Two Current "Gills." This unit additionally provides ultrarugged termination pass-through bars, allowing the CT leads to be terminated on the meter. The Shark® meter's stud-based design insures that your CTs will not open in a fault condition.

![](_page_135_Figure_9.jpeg)

#### SHARK® 100 METER

#### Easy to Use and Install

From user interface to mechanical construction, the Shark® 100 Meter was designed to be easy and intuitive, so an installer with minimal meter experience and training can easily install and use this product.

•

•

- Easy to use faceplate programming
- PC setup
- Phasor diagram showing wiring status
- Auto scroll feature
- Shallow panel depth Color coordinated

of Load Bar

Analog style %

voltage and current inputs

#### Shark® 100 meter ANSI and DIN Mounting

The unit mounts directly in an ANSI C39.1 (4" round form) or an IEC 92mm DIN square form. This is perfect for new installations and for existing panels. In new installations, simply use DIN or ANSI punches.

- Perfect for switchgear panel direct retrofits
  - Uses minimal panel space
  - Uses standard CT or PT wiring
- Mounts in only 4.25" panel depth •

![](_page_136_Figure_15.jpeg)

#### **Specifications**

20-721 Volts Line to Line

Input Withstand Capability –

Meets IEEE C37.90.1 (Surge

· Universal Voltage Input

Withstand Capability)

· Programmable Voltage

Range to Any PT ratio

Supports: 3 Element WYE,

2.5 Element WYE, 2 Element

Delta, 4 Wire Delta Systems

• Burden: 0.36VA per phase Max

at 600V, 0.014VA at 120 Volts

• Class 10: (0 to 10) A, 5 Amp Nominal

· Class 2: (0 to 2) A, 1A Nominal

• Fault Current Withstand (at 23°C):

100 Amps for 10 Seconds.

300 Amps for 3 Seconds,

Input wire gauge max (AWG 12 / 2.5mm<sup>2</sup>)

**Current Inputs** 

Secondary

- Voltage Inputs · 20-416 Volts Line To Neutral,
- - Burden 0.005VA per phase Max at 11Amps
  - 5mA Pickup Current Pass through wire gauge dimension: 0.177" / 4.5mm
  - · Continuous current withstand: 20 Amps for screw terminated or pass through current connections

#### Isolation

All Inputs and Outputs are galvanically isolated to 2500 Volts AC

#### **Environmental Rating**

Storage: (-20 to +70)° C Operating: (-20 to +70)° C Humidity: to 95% RH Non-Condensing Faceplate Rating: NEMA12 (Water Resistant) Mounting Gasket Included

- **Sensing Method** RMS
- Sampling at 400 + Samples per Cycle on all channels measured readings simultaneously
- 10/100BaseT Ethernet Modbus TCP (INP10) • Com Port Baud Rate: (9,600 to
  - 57,600) · Com Port Address: 0-247
  - 8 Bit, No parity
  - · Modbus RTU, ASCII or DNP 3.0 Protocols

#### **KYZ** Pulse

- Type Form A
- On Resistance: 23-35 Ohm
- · Peak Voltage: 350 VDC
- · Continuous Load Current: 120 mA
- · Peak Load Current: 350mA (10ms)
- Off Stat Leakage Current @ 350VDC: 1 mA
- Opto-Isolation: 3750V (60Hz, 1min)

#### **Dimensions and Shipping**

- · Weight: 2 lbs
- Basic Unit: H4.85 x W4.85 x L4.25

**Compliance:** IEC62053-22 (0.2% Accuracy)

· Shark100 - mounts in 92mm

Shark100T-DIN rail mounted

Cut-outs

transducer

6" cube

· See page 2

Meter Accuracy

DIN and ANSI C39.1 4" Round

Shipping Container Dimensions:

- ANSI C12.20 (0.2% Accuracy)
- · ANSI (IEEE) C37.90.1 Surge Withstand
- ANSI C62.41 (Burst)
- EN61000-6-2 Immunity for Industrial Environments: 2005
- EN61000-6-4 Emission Standards for Industrial Environments: 2007
- EN61326-1 EMC Requirements: 2006

| Ordering Information:                                                             | To order,                    | please fill out orderin                                                                                              | g guide:                                                                                                                             |                                                  |                                                                                                            |                                        |
|-----------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Model                                                                             | Frequency                    | Current Class                                                                                                        | V-Switch Pack                                                                                                                        | Power Supply                                     | COM                                                                                                        | Mounting<br>(Shark100 Only)            |
| Option<br>Numbers:                                                                |                              | -                                                                                                                    | -                                                                                                                                    |                                                  |                                                                                                            |                                        |
| Example: Shark 100 -                                                              | 60                           | - 10 -                                                                                                               | • V2 <del>-</del>                                                                                                                    | D2                                               | - X -                                                                                                      | • X                                    |
| Shark100<br>(Meter/Transducer)                                                    | <b>50</b><br>50 Hz<br>System | <b>10</b><br>5 Amp<br>Secondary                                                                                      | <b>V1</b><br>Default V-Switch Volts / Amps                                                                                           | <b>D2</b><br>(90-265)VAC or<br>(100-370)VDC      | X<br>No Com                                                                                                | X<br>ANSI Mounting                     |
| Shark100T<br>(Transducer Only)                                                    | <b>60</b><br>60 Hz<br>System | <b>2</b><br>1 Amp<br>Secondary                                                                                       | <b>V2</b><br>Above with Power & Freq<br><b>V3</b><br>Above with DNP 3.0 and Energy Counters<br><b>V4</b><br>Above with %THD & Limits | <b>D</b><br>18-60V<br>DC                         | 485P<br>RS485+Pulse<br>( <i>Standard in Shark</i> ®<br>100T Transducer)<br>INP10<br>10/100BaseT<br>+ Pulse | <b>DIN</b><br>DIN Mounting<br>Brackets |
| <b>Additional Accessories</b>                                                     | •                            |                                                                                                                      |                                                                                                                                      |                                                  |                                                                                                            |                                        |
| Communication Converters<br>9PINC – RS232 Cable<br>CAR6490 – LISB to JrDA Adapter |                              |                                                                                                                      | Unicom 2500-F – RS485 to RS2<br>Modem Manager, Model # MM1<br>Compliance Documents                                                   | 232 to Fiber Optic Conve<br>– RS485 to RS232 Cor | erter<br>nverter for Modem Comm                                                                            | unication                              |
| Unicom 2500 - RS485 to RS232 Co                                                   | onverter                     | Certificate of Calibration, Part # CCal – This provides Certificate of Calibration with NIST<br>traceable Test Data. |                                                                                                                                      |                                                  |                                                                                                            |                                        |

![](_page_136_Picture_53.jpeg)

#### Electro Industries/GaugeTech

1800 Shames Drive • Westbury, NY 11590 1-877-EIMETER (1-877-346-3837) Tel: 516-334-0870 • Fax: 516-338-4741 • E-Mail: sales@electroind.com • WWW.electroind.com

#### **Power Supply**

• (90 to 265) Volts AC and (100 to 370) Volts DC. Universal AC/DC Supply

Option D:

- · 2 Com Ports (Back and Faceplate)
- RS485 Port (Through Backplate)
- IrDA (Through Faceplate)

Harmonic %THD (% of Total

- Harmonic Distortion) **Update Rate** 
  - · Watts, VAR and VA every 6 cycles

· All other parameters every 60 cycles

#### Option D2:

- 18-60VDC
  - Burden: 10VA max.

#### **Communication Format**

500 Amps for 1 Second · Programmable Current to Any CT Ratio

# Fyrite<sup>®</sup> Gas Analyzers

Fast, accurate and easy to use instruments for measuring and analyzing carbon dioxide or oxygen. Fyrite Analyzers are available for either  $CO_2$  or  $O_2$  analysis, and each model is produced in three scale ranges.

All six instruments are similar in appearance and size, but differ in important construction details, as well as in the absorbing fluids.

Each model, therefore, is suitable only for the particular gas analysis or scale range for which it has been manufactured. Accuracy is within  $\pm\,1/2\%\,CO_2$  or  $O_2$ .

![](_page_137_Picture_4.jpeg)

#### **Operation**

Fyrite absorbing fluid is selective in the chemical absorption of carbon dioxide or oxygen, respectively. Therefore, the Fyrite's accuracy, which is well within the range required for industrial and professional applications, does not depend upon complicated sequential test procedures. In addition, Fyrite readings are unaffected by the presence of most background gases in the sample.

The number of tests possible with one fluid charge depends on the concentration of samples being tested. At midpoint scale reading the  $CO_2$  fluid is good for approximately 300 gas samples and the  $O_2$  fluid for 100 tests. The need to replace fluid can be easily determined with a simple test, and replacement is an easy procedure. These test procedures, as well as other good information, are provided in the Fyrite manual 11-9026.

#### **Features**

Fyrite Indicators have a broad range; they may be exposed to ambient temperatures from -30° to 150°F, and gases up to 850°F may be tested with standard aspirator sampling equipment (special sampling equipment for higher gas temperatures or dry gases is available). Order Fyrite Instruction Manual 11-9026. For temperatures above 1400°F, a ceramic sampling tube (Bacharach Part # 11-0164) is available.

#### **Applications**

#### 0-7.6% CO<sub>2</sub> -

 $CO_2$  tests of controlled atmospheres in fruit, vegetable, meat storage rooms, and incubator monitoring.

#### 0-7.6% 02-

Oxygen determination in flammable gases; oxygen tests to check inertness of atmosphere in silos, fuel tanks, etc.

#### $0-20\% CO_2 -$

Flue gas combustion tests;  $CO_2$  tests of heat treating atmospheres.

#### 0-21% O<sub>2</sub>-

Flue gas combustion tests, oxygen deficiency test. Checking oxygen concentrations in hydrogen cooled generators and oil sealed inert gas transformers.

#### 0-60% CO<sub>2</sub> -

Checking  $CO_2$  in inert gas blankets in tankers and barges carrying gasoline and other combustibles;  $CO_2$  tests on lime kilns; checking  $CO_2$  in sewage plant digesters.

#### $0-60\% 0_2 -$

Oxygen test in connection with oxygen and gas anesthesiology.

Note: United States and Foreign Postal Regulations prohibit Fyrite fluid, in or out of any unit, from being shipped parcel post.

BACHARACH

**Single Kits** - Single Kits contain either a Fyrite CO<sub>2</sub> or a Fyrite O<sub>2</sub> Indicator, Sampling Assembly and a carrying case.

**Duplex Kits -** Special Fyrite Kits containing various combinations of Oxygen and Carbon Dioxide Indicators, Sampling Assembly and a carrying case.

**Repair Kits** - One bottle of Fyrite fluid, valve plunger gasket, top gasket, screws, diaphragm, and envelope of filtering material.

Refill Kits - Two bottles of Fyrite fluid, top gasket, screws, and envelope of filtering material.

| USA                                   |                |         |                       |
|---------------------------------------|----------------|---------|-----------------------|
| COMPLETE KIT<br>ITEM NO. <sup>1</sup> | SCALE<br>RANGE | FYRITE  | ASPIRATOR<br>ASSEMBLY |
| CO <sub>2</sub> Testing               |                |         |                       |
| 10-5053                               | 0-7.6%         | 11-7042 | 11-7039               |
| 10-5000 <sup>2</sup>                  | 0-20%          | 11-7032 | 11-7029               |
| 10-5032                               | 0-60%          | 11-7034 | 11-7029               |
| 0 <sub>2</sub> Testing                |                |         |                       |
| 10-5054                               | 0-7.6%         | 11-7044 | 11-7039               |
| 10-5011                               | 0-21%          | 11-7036 | 11-7029               |
| 10-5046                               | 0-60%          | 11-7038 | 11-7029               |

| FYRITE FLUID*  |        |                           |  |
|----------------|--------|---------------------------|--|
| GAS TYPE       | RANGE  | ITEM NO.<br>3 Bottle CTN. |  |
| Carbon Dioxide |        |                           |  |
|                | 0-7.6% | 10-5100 (11-0053)         |  |
|                | 0-20%  | 10-5057 (11-0057)         |  |
|                | 0-60%  | 10-5057 (11-0057)         |  |
| Oxygen         |        |                           |  |
|                | 0-7.6% | 10-5103 (11-0059)         |  |
|                | 0-21%  | 10-5060 (11-0169)         |  |
|                | 0-60%  | 10-5060 (11-0169)         |  |

| EXPORT                    |                |                 |                       |
|---------------------------|----------------|-----------------|-----------------------|
| COMPLETE KIT<br>ITEM NO.3 | SCALE<br>Range | FYRITE<br>(DRY) | ASPIRATOR<br>ASSEMBLY |
| CO <sub>2</sub> Testing   |                |                 |                       |
| 10-5083                   | 0-7.6%         | 11-7041         | 11-7039               |
| 10-5001                   | 0-20%          | 11-7031         | 11-7029               |
| 10-5033                   | 0-60%          | 11-7033         | 11-7029               |
| 0 <sub>2</sub> Testing    |                |                 |                       |
| 10-5084                   | 0-7.6%         | 11-7043         | 11-7039               |
| 10-5012                   | 0-21%          | 11-7035         | 11-7029               |
| 10-5042                   | 0-60%          | 11-7037         | 11-7029               |

| DUPLEX KITS               |               |                  |                      |  |
|---------------------------|---------------|------------------|----------------------|--|
| COMPLETE KIT<br>ITEM NO.4 | CO₂<br>Fyrite | OXYGEN<br>Fyrite | ASSEMBLY<br>ITEM NO. |  |
| 10-5020                   | 0-20%         | 0-21%            | 11-7029              |  |
| 10-5021 <sup>4</sup>      | 0-20%         | 0-21%            | 11-7029              |  |
| 10-5090 <sup>5,6</sup>    | 0-7.6%        | 0-7.6%           | 11-7039              |  |
| 10-5106 <sup>5,6</sup>    | 0-7.6%        | 0-21%            | 11-7039              |  |
| 10-5111 <sup>5,6</sup>    | 0-60%         | 0-21%            | 11-7029              |  |

<sup>1</sup>Domestic shipments only

<sup>2</sup>Also includes Fire Efficiency Finder

<sup>3</sup>Export use only. Kits shipped without fluid.

<sup>4</sup>Export only

<sup>5</sup>Special order only: check factory for price and availability

<sup>6</sup>No export equivalent. Order components separately

| REPAIR KITS    |        |          |
|----------------|--------|----------|
| GAS TYPE       | RANGE  | ITEM NO. |
| Carbon Dioxide | 0-7.6% | 11-7053  |
|                | 0-20%  | 11-7052  |
|                | 0-60%  | 11-7052  |
| Oxygen         | 0-7.6% | 11-7055  |
|                | 0-21%  | 11-7054  |
|                | 0-60%  | 11-7054  |

| REFILL KITS    |        |               |
|----------------|--------|---------------|
| GAS TYPE       | RANGE  | ITEM NO.      |
| Carbon Dioxide | 0-7.6% | not available |
|                | 0-20%  | 11-7047       |
|                | 0-60%  | 11-7047       |
| Oxygen         | 0-7.6% | not available |
|                | 0-21%  | 11-7050       |
|                | 0-60%  | 11-7050       |

\*Note: Only genuine Bacharach Fyrite Fluid is to be used in your Fyrite Analyzer. Substitute fluids may cause the Fyrite to be inaccurate or inoperative. Numbers in parentheses are old part numbers for reference only and not to be used for ordering.