MEASUREMENT AND VERIFICATION PLAN

FOR

RIVER POINT TOWERS

AS-Built

July 31, 2008

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

Submitted by:

CDH Energy Corp.

PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 (315) 655-1063 www.cdhenergy.com

Project Team:

NYSERDA Project Manager:

Mark Gundrum, 518-862-1090 ext 3256

Developer/Applicant:

Michael Scorrano, P.E. (914) 420-6507 mscorrano@groupsconsulting.com

Stuart Temple American DG Waltham, MA stuart.temple@americandg.com

NYSERDA QC Contractor:

John A. DeFrees, P.E. LaBella Associates, PC 300 State St, Suite 201 Rochester, NY 14614 315-662-3243 jdefrees@twcny.rr.com

1. Introduction

American DG has submitted an application to the NYSERDA CIPP program (PON 984) to install a CHP system at River Point Towers at 555 Kappock Avenue in Bronx, New York. The 400+ unit apartment building has significant thermal loads.

The CHP system includes five (5) Tecogen 75 kW units. The total gross power output is 375 kW. Thermal output from the engine-generator units is used to meet various hot water loads in the facility, including space heating, DHW loads, and swimming pool heating. A dump heat exchanger rejects any unused heat from the engines to the cooling tower sump. Four of the five Tecogen units use a Cain exhaust-to-water heat exchanger to provide additional thermal output. As part of the CHP system installation, a 3,000 gallon tank was added outside the building to store preheated water for the DHW system. The DHW heat exchanger (HX) transfers recovered heat to that tank. Figure 4 in the next section schematically shows the system.

The engine-generators are 480 VAC, 3-phase (wye) induction generators. The electrical service for the 5 generators feeds into the main facility bus via two 480-to-208 transformers. A protective relay monitors generator output as well as the utility status to satisfy the Consolidated Edison inter-connection requirements.

Figure 1. Cogen Loop and Heat Recovery HXs

3,000 gallon DHW Storage tank added at the back of the building

Cain Exhaust Heat Recovery HX

Figure 2. Various CHP System Components

American DG 75 kW Unit (unit #5 w/o Exhaust HX)

2. Instrumentation

American DG supplied the instrumentation listed Table 1 below. American DG installed a single power meter (with 2 sets of CTs) to measure the gross power produced by the 5 generator units. The power output from the generators is consolidated into two feeds. One gas meter measures the natural gas supplied to the five units. American DG provided access to 15-minute facility power use data at the Consolidated Edison web site (or other 3rd party web site). Alternatively, a pulse output from the main Con Ed meter will be provided to measure facility power use.

Point	Instrument	Output Type	Sensor Location	Notes
Facility	Con Ed meter	na	Na	Applicant provided
Power				access to 15-minute
(WT)				data on Con Ed DMS
				web page
Generator	Itron/	Pulse output	In engine room. At	Measures 480 volt
Power	Sangamo ST-D101	(??? Wh per pulse)	top of 480 volt	output. (not working as
Output	(two sets of CTs)		panels	of June 2008)
(WG480)				
Generator	OSC/Intellimeter	Pulse output	In main electrical	Measures 208 volt
Power	(two sets of three	(38.4 Wh per pulse)	room. Inside	output (after Xformer)
Output	800:5 amp CTs)		Transformers that	
(208 Volt)			feed 52IT-1 and	
(WG208)			52IT-2	
Generator	American Meter	Solid State Pulse (SSP)	On gas line serving	
Gas Input	3.5M G65	(10 cf per pulse,	all 5 engines	
(FG)	serial # 03D001875	compensated)		
fluid loop	ISTEC	Pulse output: 10	In fluid loop as	4" diam pipe,
flow rate	Model #18135	gal/pulse	shown Figure 4.	nom. flow: ~110 gpm
(FHW)	Range 5.3 - 789.5 gpm	(pulse output from flow	With 2-3 feet of	(approx 11 pulses per
	32-250°F	meter shared with BTU	straight pipe before	minute)
	Continuous: 263.2	meter)	meter.	
	gpm			

Table 1.	Instrumentation	Supplie	d Bv	Siemens
Table 1.	mon unicitation	Supplie	u Dy	bicincins

The temperature sensors in Table 2 were supplied by CDH. American DG will provide 6-in deep, ¹/₄ inch thermo-wells for the four temperature sensors shown in Figure 4. Table 3 lists the status sensors that are installed to measure equipment runtime. This data will be combined with one time measurements (Table 4) to estimate the parasitic energy use for constantly-loaded equipment, such as the pumps.

Table 2.	Summary of	Temperature	Measurements
----------	------------	-------------	--------------

Point	Instrument	Output Type	Sensor Location
Hot Water Supply	Mamac RTD with 4-20 ma	4-20 ma	In fluid loop as shown Figure 4 and
(T1)	output, 100-250°F range		Figure 6.
Hot Water After	Mamac RTD with 4-20 ma	4-20 ma	In fluid loop as shown Figure 4 and
Heating HX (T2)	output, 100-250°F range		Figure 6.
Hot Water After	Mamac RTD with 4-20 ma	4-20 ma	In fluid loop as shown Figure 4 and
DHW HX (T3)	output, 100-250°F range		Figure 6.
Hot Water After	Mamac RTD with 4-20 ma	4-20 ma	In fluid loop as shown Figure 4 and

Pool HX (T4)	output, 100-250°F range		Figure 6.
Hot Water Return	Mamac RTD with 4-20 ma	4-20 ma	In fluid loop as shown Figure 4 and
– to engine (T5)	output, 100-250°F range		Figure 6. (strap-on sensor)

Notes: American DG will provide 6 inch thermowells for 1/4 inch probes for T1 to T4. T5 will be a strap-on sensor

Table 3.	Summary	of Equipment	Runtime	Measurements
----------	---------	--------------	---------	--------------

Point	Instrument	Output	Sensor Location
		Туре	
Unit #1 Pump (SP1)	Veris H300 current switch	Status	Locate in panel shown in Figure 3
Unit #2 Pump (SP2)	Veris H300 current switch	Status	Locate in panel shown in Figure 3
Unit #3 Pump (SP3)	Veris H300 current switch	Status	Locate in panel shown in Figure 3
Unit #4 Pump (SP4)	Veris H300 current switch	Status	Locate in panel shown in Figure 3
Unit #5 Pump (SP5)	Veris H300 current switch	Status	Locate in panel shown in Figure 3
HW Pump (SHP)	Veris H300 current switch	Status	Locate in 120V panel
Pool Pump (SPP)	Veris H300 current switch	Status	Locate in 120V panel

Note: as of June 5, the SP5 current switch was removed since this engine never runs.

Table 4.	Summary	of Periodic	(or One-time)	Power	Measurements
----------	---------	-------------	---------------	-------	--------------

Point	Sensor Location
Unit Pumps (WCP1,,WCP5)	In 480V panel shown in Figure 3
Loop Pump (WLP)	In 480V panel shown in Figure 3
Hot Water Pump #1 (WP1)	In 120V panel
Hot Water Pump #2 (WP2)	In 120V panel
DHW Water Pump (WDP)	In 120V panel
Pool Water Pump (WPP)	In 120V panel

Note: power measurements made with hand-held power meter (e.g., Fluke 39). See Appendix A.

Gas Meter

Figure 3. Sensors, Meters and Panel Locations

480 V Electrical Panel (parasitic loads)

Itron/ Sangamo Power Peter (generator output)

Figure 4. Schematic of CHP System Showing the Location of Temperature Sensors and Flow Meters

Figure 5. One-Line Schematic of Electrical System

Figure 6. Piping with Temperature Sensors and Flow Meter Shown

Datalogger

A CR10X Campbell Scientific datalogger was installed to record the required data. The sensors are sampled or scanned at 3-second intervals. All readings and calculated quantities are averaged, summed or integrated for each 15-minute interval. The datalogger is able to hold more than 100 days of recorded data if communications are lost. The datalogger will continue to log data for a few hours in the event of a power outage at the site. The data are downloaded from the datalogger once or twice a day by a phone-modem connection and loaded into a database. The data are checked for validity and posted on the NYSERDA web site.

Onsite Installation and Communications

The NYSERDA monitoring agent installed a datalogger panel at a location shown in the figure below. The monitoring system panel is approximately 2 ft x 2 ft x 1 ft. The site provided a dedicated phone line from nearby phone block.

Figure 7. Location of Datalogger Panel and Phone Line

BTU Meter Compatibility

American DG has installed a CONTREC 212 BTU meter to measure the total heat recovery from the system. This meter also uses the same ISTEC flow meter (as shown above) but uses its own temperature sensors. This meter will be used by AmericanDG to bill the facility owner for recovered heat. In order to provide consistency with the heat transfer calculations based on data collected by the monitoring system (and presented NYSERDA CHP web site), CDH will recommend a calibration factor (or pulse multiplier) for the CONTEC meter that will make its output more closely match the data posted on the web site.

3. Data Analysis

The collected data will be used to determine the net power output of the system as well as the fuel conversion efficiency (FCE).

Point	Description	Engineering Units
WT	Facility Power / Purchased Utility Power	kWh per interval
WG	Generator Power Output (calculated, see below)	kWh per interval
FG	Generator Gas Consumption	Standard CF per interval
WPARA	Parasitic Power (calculated; see below)	kWh per interval
FL	Fluid Loop Flow Rate	gpm
T1	Loop Supply Temperature	°F
T2	Loop Supply Temperature – to DHW HX	°F
T3	Loop Supply Temperature – to Pool HX	°F
T4	Loop Return Temperature – to Dump HX	°F
T5	Loop Return Temperature	°F
SP1	Cogen Pump #1 Runtime	Minutes per interval
SP2	Cogen Pump #2 Runtime	Minutes per interval
SP3	Cogen Pump #3 Runtime	Minutes per interval
SP4	Cogen Pump #4 Runtime	Minutes per interval
SP5	Cogen Pump #5 Runtime	Minutes per interval
SHP	Hot Water Pump Runtime	Minutes per interval
SPP	Pool Pump Runtime	Minutes per interval

Table 5. Summary of Monitored Data Points

Peak Demand or Peak kW

The peak electric output or demand for each power reading will be taken as the average kW in a 15-minute interval, or

$$kW = \frac{kWh}{\Delta t} = \frac{kWh \text{ per interval}}{0.25 \text{ h}}$$

Heat Recovery Rates

The heat recovery rates will be calculated in the datalogger at each scan interval and averaged for each 15-minute recording interval. The piping arrangement at this site allows for multiple heat rates to be determined with 5 temperature sensors and one flow reading:

Total Useful heat recovery (QU) Space Heating heat recovery (QSH) DHW heat recovery (QDH) Pool heat recovery (QPH)	= = =	$ \begin{array}{l} K{\cdot}\Sigma \left[FL{\cdot}(T1{-}T4)\right] / n \\ K{\cdot}\Sigma \left[FL{\cdot}(T1{-}T2)\right] / n \\ K{\cdot}\Sigma \left[FL{\cdot}(T2{-}T3)\right] / n \\ K{\cdot}\Sigma \left[FL{\cdot}(T3{-}T4)\right] / n \end{array} $
Rejected (unused) heat recovery (QR)	=	$K \cdot \Sigma \left[FL \cdot (T4 - T5)\right] / n$
Total heat recovery (QT)	=	K ·Σ [FL·(T1-T5)] / n

The loop fluid is expected to be water. The factor K is 487 Btu/h-gpm-°F for pure water at 180°F (the nominal temperature expected in the heat recovery loop). 'n' is the number of scan intervals included in each recording interval (e.g., with 3 sec scans and 15-minute data, n=300)

Calculated Quantities

The gross power output from the generators is calculated from two power transducers, which are shown in Figure 5.

$$WG = WG208 + WP480$$

The net power output from the CHP system will be defined as the gross power from the engine generators (WG) minus the parasitic power (WPARA). The parasitic power will be determined using the one-time measurements and pump runtime data:

$$WPARA = \sum_{i=1}^{5} \frac{SPi}{60} \cdot WCPi + (WP1 + WP2) \cdot \frac{SHP}{60} + WPP \cdot \frac{SPP}{60}$$

The loop pump and the DHW pump are assumed to operate all the time. The other pumps are multiplied by their runtime fraction.

The fuel conversion efficiency of the CHP system, based on the lower heating value of the fuel, will be defined as:

$$FCE = \frac{QU \cdot \Delta t + 3.412 \cdot (WG - WPARA)}{0.9 \cdot HHV_{gas} \cdot FG}$$

where:	QU	-	Useful heat recovery (Btu/h)
	WG	-	generator gross output (kWh)
	WPARA	-	Parasitic power use (kWh)

FG -	Generator gas consumption (Std CF)
Δt -	0.25 for 15-minute data
HHV _{gas} -	Lower heating value for natural gas (~1030 Btu per CF). Where
-	0.9 is the conversion factor between HHV and LHV

The FCE can be calculated for any time interval. When converting to daily, monthly, or annual values, the each value is summed and then the formula is applied:

$$FCE = \frac{\sum_{i=1}^{N} QU \cdot \Delta t + 3.412 \cdot \sum_{i=1}^{N} (WG - WPARA)}{0.9 \cdot HHV_{gas} \cdot \sum_{i=1}^{N} FG}$$

Where N is equal to the number of intervals in the period of interest.

Appendix

Cut Sheets for Key Sensors and Instruments

Itron Power Transducer American Meter Gas Meter ISTEC Flow meter Mamac Temperature Sensors CONTREC BTU Meter