MEASUREMENT AND VERIFICATION PLAN

FOR

CHP SYSTEM AT SEA PARK WEST APARTMENT COMPLEX

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

Submitted by:

CDH Energy Corp.

PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 (315) 655-1063 www.cdhenergy.com

Project Team:

Multifamily Performance Partner:

Rich Tesoriero rtesoriero@swinter.com

Steven Winter Associates 50 Washington Street Norwalk CR, 06854 203-857-0200 x211

CHP Developer/Installer:

Gregg Giampaolo 631-838-1977 mobile <u>all-systems@att.net</u>

Rick Cincotta 631-838-1978 mobile rcincotta@att.net

All Systems Cogeneration 1595 Ocean Ave., Suite A12 Bohemia, NY 11716 631-750-6060

NYSERDA M&V Contractor:

Hugh Henderson CDH Energy Corp. PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 315-655-1063 hugh@cdhenergy.com

1. Introduction

This monitoring plan presents the measurement and data collection approach for the CHP system at Sea Park West.

The CHP system at Sea Park West includes two Tecogen 75 kW engine generator units. The two units combined provide 150 kW gross electrical output. The thermal energy output from the units will be used for the domestic water heating and space heating loads. The heat recovery loop includes a DHW heat exchanger (HX) and a dump radiator to heat reject unneeded heat. Each Tecogen unit also includes an exhaust-to-hot water HX that adds heat directly to the boiler drum.

The generators are located next to the boiler room inside the building and the monitoring equipment will be located within the boiler room and maintenance rooms.

2. Instrumentation

The site will supply the instrumentation listed in Table 1. The NYSERDA monitoring contractor will provide the temperature sensors listed in Table 2 and integrate all the sensors into the datalogger.

Point	Instrument	Output Type	Sensor Location	Notes
Facility Power (WT)	Con Ed Utility Meter	Web	NA	Data will be extracted from Con Edison DMS website (account 69- 5302-0326-0001-7)
Generator #1 Power Output (WE1)	Wattnode WNB-3Y-208P (CTS-1250-600)	Pulse output 15 Wh/pulse	See figure 3	600 amp CT, x 3
Generator #2 Power Output (WE2)	Wattnode WNB-3Y-208P (CTS-1250-600)	Pulse output 15 Wh/pulse	See figure 3	600 amp CT, x 3
Parasitic Power (WP)	Wattnode WNB-3Y-208P (CTS-0750-50)	Pulse output 1.25 Wh/pulse	Panel in Engine room	50 amp CT
Natural Gas Fuel Input (FG)	Roots B3 Series Model: 2M175-ITPWS	Solid State Pulse 100 cf/pulse	On common gas line serving both engines	Temperature Compensated
Fluid Flow (FW)	Onicon F-1110 Flow Meter	4-20 mA output Full Scale: 130gpm	1-1/2" copper piping with 10x diam before and after	\pm 1% or better at calibrated velocity
Fluid Flow (FB)	Onicon F-1110 Flow Meter	4-20 mA output Full Scale: 130gpm	1-1/2" copper piping with 10x diam before and after	\pm 1% or better at calibrated velocity

Table 1. Instrumentation Supplied By Sea Park West, LP

Hot Water Supply	Veris 10k type 2	Resistance	Figure 1	Site provides
(THS)	Old(Mamac TE211z	Old(4-20 ma		thermowell, ¹ / ₄ "
· · ·	1000 ohm RTD)	100 – 250 °F)		probe, ½ " NPT
Hot Water Return to	Veris 10k type 2	Resistance	Figure 1	Site provides
Radiator	Old(Mamac TE211z	Old(4-20 ma	_	thermowell, ¹ / ₄ "
(THR1)	1000 ohm RTD)	100 – 250 °F)		probe, ½ "NPT
Hot Water Return to	Veris 10k type 2	Resistance	Figure 1	Site provides
Engine	Old(Mamac TE211z	Old(4-20 ma		thermowell, 1/4"
(THR2)	1000 ohm RTD)	100 – 250 °F)		probe, ½ " NPT
Hot Water Supply	Veris 10k type 2	Resistance	Figure 2	Site provides Site
from Exhaust Heat	Old(Mamac TE211z	Old(4-20 ma	_	provides
Exchanger	1000 ohm RTD)	100 – 250 °F)		thermowell, 1/4"
(TBS)	,	,		probe, ½ " NPT
Hot Water Return to	Veris 10k type 2	Resistance	Figure 2	Site provides Site
Exhaust Heat	Old(Mamac TE211z	Old(4-20 ma	_	provides
Exchanger	1000 ohm RTD)	100 – 250 °F)		thermowell, 1/4"
(TBR)		, , , , , , , , , , , , , , , , , , ,		probe, ½ " NPT

Table 2. Temperature Measurements

Figure 1. Schematic Drawing (D4) Showing the Location of Temperature Sensors and Flow Meters

Figure 2. Schematic Drawing (D6) Showing Space Heating Loop Recovery

Figure 3. One Line Electrical Drawing (E-1.2) Showing Locations of Power Measurement

<u>Datalogger</u>

An Obvius Acquisuite 8812 datalogger will be installed to record the required data. The sensors will be sampled or scanned at 1-second intervals. All readings will be averaged, summed or calculated for each 1-minute interval. The datalogger will be able to hold more than 100 days of recorded data if communications are lost. The datalogger will continue to log data for a few hours in the event of a power outage at the site. The data will be downloaded from the datalogger at least once a day by a phone-modem connection and loaded into a database. The data will be checked for validity and posted on the NYSERDA web site.

Onsite Installation

CDH Energy will install a datalogger panel at a location in the engine near the generator, see Figure 4. The monitoring system panel will be approximately 1.5 ft x 1.5 ft x 0.75 ft. Power for the panel will be taken from a nearby electrical panel.

Communications

The datalogger will use a phone mux to share a dedicated phone line with one of the Tecogen units.

Figure 4. Datalogger Location

On Site Support

Our role as the MA will be to maintain the data logger over the two-year monitoring period. We will periodically check the CHP web site to ensure the system is operating properly and also respond to issues identified by the Data Integrator or others. We will first work with the QC contractor and NYSERDA to determine if the problem is a CHP system issue or a data collection issue. In the event of a data logger issue, we will be on-site within 48 hours. If the problem is with the instrumentation supplied by the site, we will work with them to help correct the problem in a timely manner.

Around the 12th and 24th month of the monitoring period, we will come on site to verify and check the instrumentation and sensors. Temperature sensors will be compared to readings with handheld instruments; power transducer readings will also be compared to handheld power readings. Where feasible, we will check flow readings with ultrasonic flow meters. Based on these measurements we will prepare a verification summary report documenting the findings from each visit. The verification/calibration reports will also be posted on the CHP web site.

3. Data Analysis

The collected data will be used to determine the net power output of the system as well as the fuel conversion efficiency (FCE).

			Engineering
No.	Data Point	Description	Unit
1	WT	Facility Power Consumed (Imported)	kWh/int
2	WE1	Generator #1 Power Output	kWh/int
3	WE2	Generator #2 Power Output	kWh/int
3	WP	Parasitic Power Consumption	kWh/int
4	FG	Engine Fuel Consumption (both engines)	cf/int
5	FW	Flow between Engine and Heat Exchanger	gpm
6	FB	Flow between Exhaust Exchanger and Boiler	gpm
7	THS	Engine Supply Temperature	۰F
8	THR1	Heat Exchanger Return Temperature	۰F
9	THR2	Engine Return Temperature	۰F
10	TBS	Boiler Supply Temperature	۰F
11	TBR	Boiler Return Temperature	۰F

 Table 3. Summary of Monitored Data Points

Peak Demand or Peak kW

The peak electric output or demand for each power reading will be taken as the average kW in a 1-minute interval, or

$$kW = \underline{kWh}_{\Delta t} = \underline{kWh \text{ per interval}}_{(1/60) \text{ h}}$$

Heat Recovery Rates

The heat recovery rates will be calculated at each 1-minute recording interval.

The piping arrangement at this site allows for multiple heat rates to be determined with five temperature sensors and two flow reading using the following equations:

Useful heat recovery (**QU**) = $K \cdot [FW \cdot (THS - THR1) + FB \cdot (TBS - TBR)]$

Rejected (unused) heat recovery (**QR**) = $K \cdot FW \cdot (THR1-THR2)$]

The loop fluid is expected to be water. The factor K is based on the properties of the loop fluid. $(K \sim 500 \text{ Btu/h-gpm-}^\circ\text{F} \text{ for pure water}; \sim 480 \text{ for } 30\% \text{ glycol}).$

Calculated Quantities

For this site, the <u>net</u> power output from the engines is determined as:

WG = WE1 + WE2 - WP

The fuel conversion efficiency of the CHP system, based on the lower heating value of the fuel, will be defined as:

$$FCE = \frac{QU \cdot \Delta t + 3,412 \cdot (WG)}{LHV_{eas} \cdot FG}$$

where:

		
QU	-	Useful heat recovery (Btu/h)
WG	-	Generator output (kWh)
FG	-	Generator gas consumption (Std CF)
Δt	-	1/60 hour for 1-minute data
LHV _{ga}	as -	Lower heating value for natural gas (~905 Btu per CF)

The FCE can be calculated for any time interval. When converting to daily, monthly, or annual values, each value is summed and then the formula is applied:

$$FCE = \frac{\sum_{k=1}^{N} QU \cdot \Delta t + 3412 \cdot \sum_{k=1}^{N} (WG)}{LHV_{gas} \cdot \sum_{k=1}^{N} FG}$$

Where N is equal to the number of intervals in the period of interest.

4. Environmental Monitoring

CDH Energy will also complete the emissions testing required for the NYSERDA CHP Program. We will use a Testo XL350 to measure NOx and CO from each unit. The program calls for engine generator units have emissions less than:

NOx: 1.6 lb per MWh CO: 6.3 lb per MWh

These limits translate to the following concentrations assuming a 275°F exhaust and the rated engine efficiency:

NOx: 100 ppmv in exhaust

CO: 600 ppmv in exhaust)

To measure these values we will rent a Testo XL350 with the option to measure NO and NO₂. Figure 5 shows the instrument and measurement ranges. This instrument corresponds to the EPA Conditional Test Method (CTM-030). We will rent a unit from Clean Air Engineering (www.cleanair.com) with standard measurement ranges. The instrument automatically calculates the NOx from the measured NO and NO₂ concentrations.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Accuracy	<0.8% of f.v	<5ppm 0-99 ppm <5% of m.v. 100- 2000 ppm <10% of m.v. 2001- 10000 ppm	<2 ppn 0-39.9 ppn <59, of my. 40-500 ppm	<5 ppm 0-99 ppm <5% of m.v. 100- 2000 ppm <10% of m.v. 2001- 3000 ppm	<2 ppn. 0- 39.9 ppm <5% of m.v. 000 ppm	<5 ppm 0-99 ppm <5% of m.v. 500 ppm	<5 ppm 0-99 ppm <5% of m.v. 100- 2000 ppm <10% of m.v. 2001- 5000 ppm	<2 ppm 0-39.9 ppm <5% of m.v. 40-300 ppm	<0.04% vol. 0- 0.4% vol. <10% of m.v. 0.41 - 4% vol.
Resolution	0.1% vol	1 ppm	0.1 ppm	1 ppm	0.1 ppm	0.1 ppm	1 ppm	0.1 ppm	0.01 vol%
Resp. Time	20s (t95)	40s (t90)	-0s (t90)	30s (t90)	0s (t90)	40s (t90)	30s (t90)	35s (t90)	40s (t90)

Figure 5. Testo XL350 Handheld Emissions Tester with Specs (Std Measurement Ranges)

Measurements will be taken in the exhaust stack above each Tecogen Unit (we will drill a ¼ inch port if not available). Emissions will be measured for 30 minutes. The average for the 30-minute period must be below the upper limits given above.

Once the applicant has confirmed the engine-generator units will meet the requirements, CDH will come onsite to complete the testing. In the event that units do not pass, CDH will remain on site for up to 8 hours while units are adjusted or tuned. In the event that the units do not pass, CDH will reschedule and return to site for only one additional day for retesting.

Appendix:

The locations of the T1 (THS) and T2 (THR1) thermowells

The location of the Generator Power Transducer

THERMISTOR WELL DETAILS

TEMPERATURE WELL 1/2" McMASTER PART NO. 3957K64

Appendix B

Seapark West

Generator Power

Flowmeter

FB (flow between exhaust heat exchanger and boiler) couldn't be verified since the system wasn't running in heating mode, but the sensor was manually spun to ensure that it provided pulse outputs to the Obvius. FW on the other hand (flow between engine and heat exchanger) was reading 45 gpm, with the expected flow being 37 gpm.

		Generato	rs #1 & #2			Parasitic
	Manual (A)	Manual (V)	Manual (kW)	Obvius (kW)	Manual (kW)	Obvius (kW)
Trial 1	450,456, 460	216	142	141.4	3.11	*values were off due to sig. fig's on
Trial 2	450, 450, 455	215	142	141.5	2.94	multiplyer, power readings
Trial 3	450, 453, 453	214.66	141	141	3.16	changed to w/h to avoid problem

There was no power output from Generators #1 and #2 initially due to the ground being wired instead of the neutral. This was corrected.

For the parasitic power measurement, the CT's were facing the load instead of the line, which gave a negative power output. Since there wasn't much room to work with the CT's the signal output was switched from P1 to P2, causing the power to be positive.

Ga	is Meter				
		Obvius		Meter: 3M175 -	- 3000 cf/h
	Pulses	cf	cf/h	cf/pulse =	100
10:30	14674	1467400			
10:40	14677	1467700	1800		
10:57	14682	1468200	1765		
11:00	14683	1468300	2000		

We received one pulse in 3:03, which works out to approx 20 pulses per hr. This would yield 2,000 cf/h. With a LHV of 900 btu/cf and an estimated engine efficiency of 25% this amount of natural gas flow would be capable of producing 131.84 kW. This is very close to the combined generator output, and the difference is accounted for by a higher turbine efficiency than estimated.

Temperature Sensors

	THS / Ser	nsor #1	THR1 / Sensor #2			THR2 / Sensor # 3		
-	Fluke (F)	Obvius (F)	Fluke (F)	Obvius (F)	Gauge (F)	Fluke (F)	Obvius (F)	
10:13	187.3	196	141.5	151	153			
10:20						140	158	
10:26	192.8	208	136	158	152			
10:28						139	145.4	
10:45		197.4		150.7	154			

The best verification was for sensor #2 since there was a gauge near the temp sensor, because measurements with the fluke were always low, since we could only use the surface probe to measure the temperature of pipe. Temp sensors #4 and #5 could not be verified since they are on the loop that wasn't running. The water temperature is below the sensors minimum range, so the Obvius is recording 110 ° plus or minus for these two sensors (their lowest mA output).

Seapark West Addendum

Site Events

Date	Event
9/25/2009	Data Collection Begins
10/8/2009	The RTD sensor for TBS is no longer working properly. Boiler heat recovery is currently being set to zero until this issue is resolved. Heat recovered through domestic hot water is unaffected.
11/24/2009	Added 24VDC supply, moved FB to exp board. Exp board is now separately powered with its own power supply.
4/5/2010	Switched the datalogger to send 1 minute data instead of 5 minute data. This was done to aide in the debugging of several issues.
4/7/2010	Pulse counts from the fuel meter were not being counted properly, adjusted the closed resistance threshold for pulse readings on the data logger from 1000 to 2500. Switched the RTD sensors to thermistors.
6/16/2010	Installed new veris 10k type 2 Curve on the obvius datalogger.
9/28/2010	Updated documentation. Changed the date that thermistor offsets were being applied to temperatures too 4/7/2010 (was 7/4/2010). Modified range checks to account for 1 min data. Fixed the calculation of dumped heat recovery to use FW (HX flow rate) instead of FB (boiler flow rate).

Logger	Chan	Data	Wire	Logger Mult	Notes
Chan	Туре	Point	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Logger muit	
250-In1	Pulse	WG1	5 – Red/Blk	0.015 kWh/p	
250-In2	Pulse	WG2	5 – Grn/Wht	0.015 kWh/p	
250-In3	Pulse	WP	0	0.001 kWh/p	Mult by: 1.25/1.00
250-In4	4-20ma		6		Was FW2 before
					11/24/09
250-In5	Resistance	T3/THR2	7	100-250F	Was 4-20ma before
					4/7/2010
250-In6	Resistance	T4/TBS	9	100-250F	Was 4-20ma before
					4/7/2010
250-In7	Resistance	T5/TBR	8	100-250F	Was 4-20ma before
					4/7/2010
250-In8			Unused		
001-In1	4-20ma	FW1	Red/Blk/Blue	0-130 gpm	
001-In2	Resistance	T1/THS	3	100-250F	Was 4-20ma before
					4/7/2010
001-In3	Resistance	T2/THR1	4	100-250F	Was 4-20ma before
					4/7/2010
001-In4	Pulse	FG	5	100 cf/p	
001-In5	4-20ma	FW2	Red/Gr/Blk	0-130 gpm	

Data Logger Setup

Notes: 250 = main board, 001 = expansion board

Database Setup

Chan Name	Device	column							
WE1_ACC,	mb-250,	0							
WE2_ACC,	mb-250,	5							
WP_ACC,	mb-250,	10							
FG_ACC,	mb-001,	15							
THR2,	mb-250,	21							
TBS,	mb-250,	26							
TBR,	mb-250,	31							
FW,	mb-001,	0							
THS,	mb-001,	б							
THR1,	mb-001,	11							
FB,	mb-250,	15 →	•	mb-001,	20	(changed	11/24/09	10	am)

Temperature Sensor Calibration before 4/7/2010 2 pm

Data Point	Sensor ID	Multiplier	Offset
THS	#1	1.0617	-5.3032
THR1	#2	0.9783	+0.8494
THR2	#3	0.9711	+1.5024
TBS	#4	0.9922	-0.6696
TBR	#5	0.9916	+2.9896

Data Point	Sensor ID	Multiplier	Offset
THS	#23	1	-2.6
THR1	#24	1	-2.9
THR2	#25	1	-3.2
TBS	#26	1	-2.5
TBR	#27	1	-2.3

Temperature Sensor Calibration After 4/7/2010 2 pm

[Actual T] = [measured T] x mult + offset

WattNode Multiplier Table

	Pulses Per kilowatt-hour (PpKWH)				Watt-hours per pulse (WHpP)				
CT Size (amps)	3Y-208 3D-240	3Y-400 3D-400	3Y-480 3D-480	3Y-600	3Y-208 3D-240	3Y-400 3D-400	3Y-480 3D-480	3Y-600	
5	8000.00	4173.91	3465.70	2766.57	0.125	0.2396	0.2885	0.3615	
15	2666.67	1391.30	1155.24	922.190	0.375	0.7188	0.8656	1.0844	
30	1333.33	695.652	577.617	461.095	0.750	1.4375	1.7313	2.1688	
50	800.000	417.391	346.570	276.657	1.250	2.3958	2.8854	3.6146	
60	666.667	347.826	288.809	230.548	1.500	2.8750	3.4625	4.3375	
70	571.429	298.137	247.550	197.612	1.750	3.3542	4.0396	5.0604	
100	400.000	208.696	173.285	138.329	2.500	4.7917	5.7708	7.2292	
150	266.667	139.130	115.523	92.219	3.750	7.1875	8.6563	10.844	
200	200.000	104.348	86.643	69.164	5.000	9.5833	11.542	14.458	
250	160.000	83.478	69.314	55.331	6.250	11.979	14.427	18.073	
300	133.333	69.565	57.762	46.110	7.500	14.375	17.313	21.688	
400	100.000	52.174	43.321	34.582	10.000	19.167	23.083	28.917	
600	66.667	34.783	28.881	23.055	15.000	28.750	34.625	43.375	
800	50.000	26.087	21.661	17.291	20.000	38.333	46.167	57.833	
1000	40.000	20.870	17.329	13.833	25.000	47.917	57.708	72.292	
1200	33.333	17.391	14.440	11.527	30.000	57.500	69.250	86.750	
1500	26.667	13.913	11.552	9.2219	37.500	71.875	86.563	108.44	
2000	20.000	10.435	8.6643	6.9164	50.000	95.833	115.42	144.58	
3000	13.333	6.9565	5.7762	4.6110	75.000	143.75	173.13	216.88	
any	40,000	20,870	17,329	<u>13.833</u>	CToize	CToize	CTrize	CT:120	
1	CTsize	CTaize	CTsize	CTsize	40	20.07	17.529	10.000	

Table 5: Scale Factors - Bidirectional Outputs

Sensor Verification

Power

There was no power output from Generators #1 and #2 initially due to the neutral wire not being connected. This was corrected by connecting neutral to enclosure ground.

For the parasitic power measurement, the CT's were facing the load instead of the line, which gave a negative power output. Since the CT could not be easily reversed, the signal output was switched to use the P2 output instead of P1.

		Generator #1 & #2 Combined						Parasitic	
	Fluke 39				Fluke 39		Fluke 39	Obvius	
	(Volts)	Fluke 39 (A)	(kVA)	Implied PF	(kW)	Obvius (kW)	(kW)	(kW)	
Trial 1	450,456, 460	216	170.4	0.83	142	141.4	3.11		
Trial 2	450, 450, 455	215	168.2	0.84	142	141.5	2.94	3.275	
Trial 3	450, 453, 453	214.66	167.7	0.84	141	141	3.16		

Notes: Parasitic power was multiplied by 1.25 to correct for trucation of 0.00125

Gas Meter (September 2009)

The meter provides one pulse in 183 seconds, which works out to approx 18-20 pulses per hr. This would yield 1,800 cf/h with 100 cf/pulse. The results in the table below confirm that the gas consumption by the engines was about 1800 cf/hr. With a LHV of 900 btu/cf and power use of 141 kW this translates to estimated engine efficiency of about 29%.

Г	Obvius				Motor: 3M175	- 3000	cf/h max
-	Pulses	cf	cf/hr		cf/pulse =	5000	100
10:30	14,674	1,467,400					
10:40	14,677	1,467,700	18	00			
10:57	14,682	1,468,200	17	78			
11:00	14,683	1,468,300	18	00			
After changi	ng the resistant	ce threshold	on 4/7/201	0			
Timestamp	Gas Meter	Obvious					
1:08	90912.2	17977900)				
1:30	90918.9	17978600)				
1:51	90925.1	17979200)				
2:32	90937.1	17980400)				
84 minutes	24.9=2490cf	2500cf					
Cf/hour =	1778	1785					

THR2 – Behind boilers, bottom left corner of

wall.

1000

TBR - Behind boilers, bottom right corner of

wall.

FB – Behind boilers just to the left of TBR sensor

WE1 and WE2 – in front of boilers, in small box mounted above head height.

TBS – Behind boilers, right side of wall, above TBR

WP – In the generator room, same wall to the left of Obvius panel.

Seapark West

THS – on HX wall, left most and lower of the THR1 temp sensor.

FW – on HX wall below expansion board box (grey in upper left corner of pic)

FG – in narrow side room, off of large boiler room, against right wall

THR1 – on HX wall, right most and top most temp sensor.

Obvius Datalogger Box – Mounted on the right wall when looking in generator room from outside.

Obvius Expansion Board Box – Mounted on HX wall.

Gas Meter with new Head Installed