MEASUREMENT AND VERIFICATION PLAN

FOR

ARKER COMPANIES 195 STEUBEN STREET CHP SYSTEM

March, 2015

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

Submitted by:

CDH Energy Corp. PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 (315) 655-1063 www.cdhenergy.com

Project Team:

Applicant:

Allan Arker The Arker Companies 15 Verbena Avenue, Suite #100 Floral Park, NY 11001

Facilities:

Terrace Gardens #1 195 Steuben Street Staten Island, NY 10304

CHP Developer/Installer:

Gregg Gimpaolo All Systems Cogeneration Inc. 1595 Ocean Ave. Suite A12 Bohemia, NY 11716 631-750-6060

Monitoring Contractor:

Hugh Henderson Jeremy Wade CDH Energy Corp. PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 315-655-1063 hugh@cdhenergy.com jeremy@cdhenergy.com

1. Introduction

All Systems Cogeneration Inc. (ASC) is installing a cogen system at Terrace Gardens #1 at 195 Steuben Street, an affordable housing complex owned and operated by Arker Companies. The system is based around one (1) INV-100 100 kW InVerde 100 cogen unit provided by Tecogen. The InVerde unit includes a natural gas-fired reciprocating V8 engine, water cooled permanent magnet generator, jacket water and exhaust heat recovery systems, and self-contained inverter in a sound attenuating enclosure. The unit can provide 100 kW of continuous power, 125 kW of peak power, and 700 MBtu/h of thermal output as hot water.

The CHP system contains three (3) separate water loops; a low temperature loop for DHW heating, a high temperature loop for boiler heating, and an inverter cooling loop. The low temperature loop includes a HX for DHW loads and a dump radiator to remove excess heat. The high temperature loop feeds the boilers directly and is possible because the boilers at this facility are low pressure boilers (8-10 lbs steam). The generator cooling loop flows directly to a cooling radiator.

2. Monitoring System

A monitoring system is installed, to measure the performance of the CHP system. The system is based around an Obvius AcquiSuite data logger. ASC will provide the flow meters and has been subcontracted to install the metering and CDH Energy will provide the temperature sensors and install the monitoring system. The critical monitored points to quantify system performance are listed in Table 1.

Logger					
Channel	Data Point	Description	Eng Units	Instrument / Transducer	Output
MB-001	WT	Gross Power Output	kWh	INVERDE Modbus Output	Modbus RTU
MB-002	WP	Parasitic Loads	kWh	Continental Controls Wattnode	Modbus RTU
-	WG	Net Power Output	kWh	-	Calculated
1	FG	Cogen Gas Consumption	cf	NGrid Utility Meter Pulse Output	Pulse
2	FL	Low Temp Loop - Flow	gpm	Onicon F-1111	4 - 20 ma
3	TLS	Low Temp Loop - Supply Temp	°F	Veris 10k Type 2 Thermistor	Resistance
4	TLR1	Low Temp Loop - DHW HX Return Temp (after DHW HX)	°F	Veris 10k Type 2 Thermistor	Resistance
5	TLR2	Low Temp Loop - Dump HX Return Temp (after Dump HX)	°F	Veris 10k Type 2 Thermistor	Resistance
6	FH	High Temp Loop - Flow	gpm	Nice Titan	4 - 20 ma
7	THS	High Temp Loop - Supply Temp	°F	Veris 10k Type 2 Thermistor	Resistance
8	THR	High Temp Loop - Return Temp (After Boiler HX)	°F	Veris 10k Type 2 Thermistor	Resistance
-	QU	Total Useful Heat Recovery	MBtu	-	Calculated
-	QR	Rejected Heat Recovery	MBtu	-	Calculated
-	QSH	Boiler Heat Recovery	MBtu	-	Calculated
-	QDHW	DHW Heat Recovery	MBtu	-	Calculated

 Table 1. Monitored Data Points

The total useful thermal output of the system (QU) will be calculated using the measured temperatures (across the useful HX's) and flows provided by the flow meters (FL, TLS, TLR1, TLR2, FH, THS, THR). Heat rejected by a dump radiator will also be calculated using the flow and temperatures measured across the dump radiator (FL, TLR1, TLR2).

The generator gross power output (WT) will be read directly from the cogen unit. The parasitic power (WP) will be measured with a WattNode power transducer. The parasitic loads typically include: cogen loop pumps, steam/boiler pump, and fans. The systems total parasitic loads will be subtracted from the gross power (WT) output to calculate the unit's net power (WG). Natural gas to the cogen unit (FG) will be measured on the pipe directly in line with the cogen unit.

Sensor Details

- Temperature.
 - \circ Veris Industries 2 ¹/₂" Remote Probe 10K Type II Thermistor
- Water Flow.
 - Onicon F-1111 Insertion Style Impeller Flow Meter
 - $\circ \quad \text{NICE}-\text{Titan Insertion Style Vortex Shedding Flow Meter}$
- Gas Flow.
 - National Grid Utility Pulse Meter
- Power.
 - Continental Controls Systems WattNode

Data Logging System

CDH Energy provides, installs, and wires an Obvius AcquiSuite data logger, power meter, and temperature sensors. ASC will provide and install an Onicon flow meter for the low temperature loop and a Nice Titan flow meter for the high temperature loop. The data logger will be provided a static IP address. The Obvius will upload data to CDH, who will serve it up to the NYSERDA Data Integrator web site

3. Data Analysis

Heat Recovery Rates

The heat recovery rates will be calculated using the 1-minute average data from the logger.

Total useful heat recovery

$$QU_{avg} = k \cdot \frac{1}{N} \prod_{j=1}^{N} FH \cdot THS_j - THR_j + FL \cdot TLS_j - TLR1_j$$

Rejected heat recovery

$$QR_{avg} = k \cdot \frac{1}{N} \prod_{j=1}^{N} FL \cdot TLR1_j - TLR2_j$$

Depending on the site configuration additional heat recovery calculations may be made using additional temperature sensors on the main recovered heat loop and the measured flow.

Where N = 60 when converting from 1-minute to hourly data. K is the product of density and specific heat. The loop fluid is a water glycol mixture.

30% glycol: $k_{gly} = 480 \text{ Btu/h·gpm}$

Other Calculated Quantities

Net generator output will be calculated by subtracting the parasitic loads from the gross generator output.

WG = WT - WP

The net total efficiency of the CHP system, based on the higher heating value of the fuel, will be defined as:

$$TE_{net} = \frac{QU \cdot \Delta t + 3.412 \cdot (WG)}{HHV_{gas} \cdot FG}$$

where:

QU _{avg} -	Useful heat recovery (MBtu/h)
WG -	Net Generator output (kWh)
FG -	Generator gas consumption (Std CF)
Δt -	0.250 hour for 15-minute data
HHV _{gas} -	Higher heating value for natural gas (1.032 MBtu per CF ¹)

The total efficiency (TE) can be calculated for any time interval. Other efficiency metrics are also of interest.

¹ HHV from <u>www.eia.doe.gov</u>

Table 2 below summarizes the other efficiency metrics that will be determined:

	NET (using net power)	GROSS (using generator output)
Electrical Efficiency (EE)	$\frac{3.412 \cdot (WG)}{HHV_{gas} \cdot FG}$	$\frac{3.412 \cdot (WT)}{HHV_{gas} \cdot FG}$
Thermal Efficiency (THE)	$\frac{QU \cdot \Delta t}{HHV_{gas} \cdot FG}$	
Total Efficiency (TE)	$\frac{QU \cdot \Delta t + 3.412 \cdot (WG)}{HHV_{gas} \cdot FG}$	$\frac{QU \cdot \Delta t + 3.412 \cdot (WT)}{HHV_{gas} \cdot FG}$
Unit Efficiency (UE)	$\frac{(QU+QR)\cdot\Delta t+3.412\cdot(WG)}{HHV_{gas}\cdot FG}$	$\frac{(QU+QR)\cdot\Delta t+3.412\cdot(WT)}{HHV_{gas}\cdot FG}$

5

Notes: 1) All values must be over same time interval.

2) The difference between net and gross efficiency can also be related by a factor of: $1\mathchar`-f_{para}$

Appendix A

Site Addendum

Addendum – 195 Steuben Street

Terrace Gardens #1 195 Steuben Street Staten Island, NY 10069

Site Contacts

Michael Grew Progressive Management 917-282-8604 <u>MGrew@progressivemgmt.net</u> Joe Gilligan All Systems Cogen 631-891-8123

- CDH was on site November 3, 2014 for the initial site visit to scout out sensor locations and communications, leave enclosure and backplane for mounting by facility staff, and rough-in wiring where possible. All 5 Veris thermistors were installed on the pipes for **TLS**, **TLR1**, **TLR2**, **THS**, and **THR**.
- CDH was on site December 4, 2014 and December 5, 2014 to install the data logger, install the parasitic power transducers, install flowmeters, terminate sensor wiring, configure and verify metering, set up communications, and begin data collection.
- CDH was on site December 19, 2014 to install the high temperature flowmeters, set up communications, and begin data collection.
- CDH was on site December 30, 2014 to install high temperature flowmeter power supply and signal isolator.
- All Systems Cogen was on site on January 21, 2015 to terminate the wires for the gas pulse meter.

Summary

CDH provided and installed the data logger, temperature sensors and parasitic power meter. All Systems Cogen provided the flowmeters and were installed by CDH Energy. CDH performed all of the necessary wire pulls and terminated wiring to the data logger and sensors.

Datalogger IP:	50.74.102.118
Netmask:	255.255.255.248
Gateway:	50.74.102.113
Primary DNS:	24.29.99.35
Secondary DNS:	24.29.99.36

Logger					
Channel	Data Point	Description	Eng Units	Instrument / Transducer	Output
MB-001	WT	Gross Power Output	kWh	INVERDE Modbus Output	Modbus RTU
MB-002	WP	Parasitic Loads	kWh	Continental Controls Wattnode	Modbus RTU
-	WG	Net Power Output	kWh	-	Calculated
1	FG	Cogen Gas Consumption	cf	NGrid Utility Meter Pulse Output	Pulse
2	FL	Low Temp Loop - Flow	gpm	Onicon F-1111	4 - 20 ma
3	TLS	Low Temp Loop - Supply Temp	°F	Veris 10k Type 2 Thermistor	Resistance
4	TLR1	Low Temp Loop - DHW HX Return Temp (after DHW HX)	°F	Veris 10k Type 2 Thermistor	Resistance
5	TLR2	Low Temp Loop - Dump HX Return Temp (after Dump HX)	°F	Veris 10k Type 2 Thermistor	Resistance
6	FH	High Temp Loop - Flow	gpm	Nice Titan	4 - 20 ma
7	THS	High Temp Loop - Supply Temp	°F	Veris 10k Type 2 Thermistor	Resistance
8	THR	High Temp Loop - Return Temp (After Boiler HX)	°F	Veris 10k Type 2 Thermistor	Resistance
-	QU	Total Useful Heat Recovery	MBtu	-	Calculated
-	QR	Rejected Heat Recovery	MBtu	-	Calculated
-	QSH	Boiler Heat Recovery	MBtu	-	Calculated
-	QDHW	DHW Heat Recovery	MBtu	-	Calculated

Monitored Data Points

Procedure

- Power was verified using a Fluke power meter comparing the cogen unit instantaneous power and current measurement on the Obvius to the Fluke measurement.
- Temperature sensors were calibrated in-house, therefore field verification was not necessary.
- Hot water loop flows were verified by comparing the flow meter readings on the Obvius to measurements taken using a portable Portaflow ultrasonic flowmeter.
- The gas pulse meter was installed January 21, 2015. Joe from All Systems Cogen was on site to terminate the wires for the pulse meter installed by National Grid. Gas was verified by comparing the calculated electrical efficiency from the measured gas flow from the gas meter to the specifications for the Inverde INV-100.

Verification Data - December 19, 2014

Generator Power:

_	А	В	С
Fluke (amps)	54	54	53
INV (amps)	54	54	53
Fluke (kW)	39.0	2 po	wer
INV (kW)	41.3	measur	ements
Fluke (kW)	39.1	2 power	
INV (kW)	41.5	measurements	
	А	В	С
Fluke (amps)	45.4	45	44.3
INV (amps)	48	48	47
Fluke (kW)	39.2	3 ро	wer
INV (kW)	41.4	measurements	

Parasitic Loads:

Parasitics are continuously measured with a WattNode power transducer. The loads measured include:

- DHW Pump
- Steam Pump
- Heat Dump Fan #1
- Heat Dump Fan #2
- Miscellaneous circuits (see photo of electrical panel door card below on page 5 for more details)

Temperatures:

Field verification not performed, because sensors were lab calibrated.

Flow:

FL	Portaflow (gpm)	Onicon (gpm)
	17.8	19.9
	17.8	20.3
	18.8	21.0
	18.8	21.6
	19.0	21.9
	17.2	20.3
	15.3	17.0
	13.1	14.9
	12.5	14.2
	12.4	14.0
Avg:	16.3	18.5

Pipe Material:	Copper Type L
Nominal Size:	1.5"
Outside Diameter:	1.625"
Wall Thickness:	0.0600"
Sensor Spacing:	0.735"

Power (kW)	Gas (cf)	Useful Heat (Mbtu)	LHV
45.45	100	235.6684	Elec
45.65	100	235.8057	
45.05	200	239.7360	To
45.75	100	242.7489	
45.85	100	254.0989	
43.82	200	272.9672	<u>HHV</u>
44.06	100	248.5854	Elec
43.69	100	253.1735	
45.35	200	244.1873	To
45.65	100	20.9647	
45.36	100	260.1041	
45.75	200	249.3310	
45.15	100	240.7365	
45.06	100	244.2976	
45.55	200	247.5228	
45.30	100	242.5154	
45.25	100	233.4745	
45.39	100	230.4253	
44.65	200	240.5265	
45.14	100	245.8158	
45.15	130.00	234.13	Avg.

LHV (0.927 MBtu/cf)
Electrical Efficiency
32%
Total Efficiency
81%
<u>HHV (1.032 Mbtu/cf)</u>
HHV (1.032 Mbtu/cf) Electrical Efficiency
Electrical Efficiency
Electrical Efficiency 29%
Electrical Efficiency 29% Total Efficiency

Geometric Correction for High Temperature Flow Meter

2 in

The NICE flow meter for the high temperature water loop for the boiler feed water pre-heat was ordered for a 2 inch schedule 40 steel pipe and was installed in a 1.5 inch type L copper pipe. The geometric correction multiplier is shown below.

1.5 in

Pipe Dimensions	
	1.5 in

	Sched 40	Sched 40	Type L
OD (in)	1.9	2.375	1.625
Wall Thickness (in)	0.145	0.154	0.06
ID (in)	1.61	2.067	1.505
Area (in ²)	2.0358	3.3556	1.7789
Area (ft ²)	0.0141	0.0233	0.0124

Ratio for 231 Steuben set for 2 inch sched 40 have 1.5 inch type L 0.530

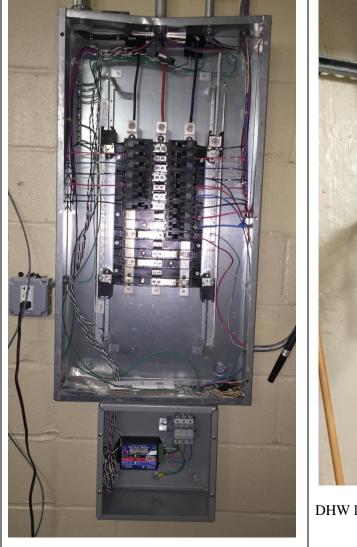
Ratio for 195 Steuben set for 1.5 sched 40 have 1.5 inch type L 0.874

	NICE corrected	All-Systems Meter
INICE FACE	NICE CORPECTED	All-Systems weter

195 Steuben	23.0	20.1	21.0
231 Steuben	33.0	17.5	19.0

By TECOGEN

Site Photos



Nameplate for 195 Steuben Street

1 GFI 3 GFI GYCOLF	2 DHW COIL& GFI 44 PUMP DHW
5 OUTSIDE GRI	0
7	8
9 FAN #1	10 FAN # 2
11	12
13 RELAY PANEL	14
MAK CO ISMOKE DET	16 STEAM HUMP
13 RELAY PANEL MSK CO SMOKE DET 17 19 21	18
19	20 HUAC
21	22
23	24
25	26
27	28
29	30
31	32
33	34
37	36
39	38
41	40
Siemens Industry, Inc.	42 Norcross, GA
	12-110-01 Rev. 8

Electrical panel with parasitic loads (left). Electrical panel door card (above)

Power transducer below electrical panel with parasitic loads

DHW loop flow meter

Appendix B

Data Sheets

Energy Information Made Obvius

AcquiSuite

Data Acquisition Server

ACQUISUITE A8812-1 AND A8812-GSM

Obvius' AcquiSuite is an intelligent, flexible data acquisition server allowing users to collect energy data from meters and environmental sensors. Designed to connect to IP-based applications such as enterprise energy management, demand response and smart grid programs, the AcquiSuite server lets you connect thousands of energy points, benchmark energy usage and reduce energy costs.

DATA COLLECTION

The AcquiSuite collects and logs data from connected (wired or wireless) devices based on user selected intervals. Data from downstream devices is time stamped and stored locally in non-volatile memory until the next scheduled upload or manual download. Using an integrated modem or Ethernet (LAN) connection you can push or pull data via HTTP, XML, FTP or any custom protocol utilizing our AcquiSuite Module to build your own application, including integrated cellular communication options.

INSTALLATION & FEATURES

No software is required. Easily access information through ANY web browser. The AcquiSuite has eight integrated flex I/O inputs. Each field selectable input can measure resistive, analog (4/20mA / 0-10V) and standard pulse / KYZ pulse output devices. This simplifies installation for basic projects monitoring electric, gas or water meters. There are several additional features including alarming, SNMP Traps, network configuration, wireless diagnostics, security provisions, alarm relays and backlit LCD. Our integrated meter driver library is designed to speed up installation and lower integration costs through "plug-and-play" connectivity.

COMPATIBILITY

The AcquiSuite is compatible with nearly any front-end software platform allowing customers to use a variety of reporting tools; whether it's a local server or an enterprise wide reporting suite. Obvius offers a free utility for automated .CSV file downloads or an affordable hosted solution for \$195.00 annually (unlimited data storage).

PARTNERS

Obvius' outstanding integration and software partners supplement our products and services to ensure you receive the very best energy monitoring solution.

APPLICATIONS

- Utility submetering (electricity, gas, water, etc.)
- Measurement and verification (M&V)
- Reduce energy costs
- Access energy information from local or remote sites
- Benchmark building energy usage
- View "real time" performance data
- Track energy use and peak demand for Demand Response programs

- Monitor performance of critical systems (lighting, HVAC, PDUs, inverters, etc.)
- Alarm notification for data points above or below target levels (including SNMP Traps)
- Monitor renewable energy performance and production
- Create load profiles for energy purchases
- Push or pull meter data to energy dashboards, kiosks and software applications
- LEED / Energy Star certification

ABOUT OBVIUS

Obvius manufactures data acquisition and wireless connectivity products specifically for energy management. We deliver cost-effective, reliable hardware designed to speed up installation. Our products are based on an open architecture allowing our customers to collect and log energy information from virtually any meter or sensor. The ability to support multiple communication options provides remote access to all your energy information. Founded in 2003, Obvius is located in Tualatin, Oregon. We serve a global clientele and continue to drive innovation by simplifying data collection.

SOLUTIONS

- Data Acquisition
- Wireless Communication
- Meters & Sensors
- Custom Packaged Solutions
- Integration & Software Partners

HEADQUARTERS

Tualatin, Oregon

CONTACT US sales@obvius.com

AcquiSuite A8812

Obvius helps customers collect and distribute energy information. Users can begin with one best-of-breed product that satisfies a requirement, or incorporate several products and services for a complete energy management solution.

Specifications	
Processor	ARM9 embedded CPU, ARM7 IO co-processor
Operating System	Linux 2.6
Memory	32 MB RAM
Flash ROM	16 MB NOR Flash (expandable with USB memory device)
Interval Recording	1 to 60 minutes, user selectable
LEDs	8x input, 4 modem activity, Modbus TX/RX, power, system, IO status
Console	2 x 16 LCD character, two push buttons
Power	
North America	110-120VAC, 60Hz, primary
CE/Europe	100-240VAC, 50-60Hz, primary (interchangeable plug adapters optional)
Power Supply	24VDC, 1A, class 2 wall brick transformer included
Communication	
Protocols	Modbus/RTU, Modbus/TCP, TCP/IP, PPP, HTTP/HTML, FTP, NTP, XML, SNMP-Trap
LAN	RJ45 10/100 Ethernet, full half duplex, auto polarity
Modem	V.34 bis, 33,600 bps (A8812-1 only)
Cellular	GSM/GPRS Cellular (A8812-GSM only)
USB	USB expansion port
Inputs	
Serial Port	RS-485 Modbus, supports up to 32 external devices (expandable)
I/O	8x Flex IO inputs with user selectable modes: voltage, current, resistance, pulse and status
Outputs	
Relays	2x, dry contact 30 VDC, 150 mA max
Physical	
Weight	5lbs (2.3kg)
Size	8" x 9.25" x 2.5" (203mm x 235mm x 64mm)
Environment	
North America	0 to 50C, 0-90% RH, non-condensing
CE/Europe	5 to 40C, 0-90% RH, non-condensing
Codes and Standards	
FCC CFR 47 Part 15, Class A	
Additional Notes	

NEMA enclosures available upon request

Manufactured in the USA

CE

Obvius 20497 SW Teton Avenue Tualatin, OR 97062 503 601 2099 866 204 8134 (USA only) sales@obvius.com

TITAN BTU Insertion Vortex

Product Features

- Complete BTU, water, gas or steam measurement solutions.
- Standardize on an insertion bar that can measure line sizes 1.5" – 36"
- Heavy Duty & Maintenance Free Design
- All parts are welded stainless steel construction
- No moving parts, No holes to clog
- Life-time repeatability
- 1" NPT Connection
- Dual Piezo Sensors never contact fluid
- Dual Thermistor Sensors
 <u>+</u>.1 Deg^oC accuracy
- No pins or screws to corrode and rust
- Can handle process pressure over 500 psig
- Can handle process temperature up to 450 °F
- Simultaneous 4-20 mA, programmable Pulse output..

Model TITAN BTU General Specification

Accuracy • Reliability • Standardization • Installation

The **TITAN** vortex sensing element is CNC machined out of one piece of solid stainless steel. The ceramic ISO Piezo electric sensors are bonded inside the vortex element which is press fit to the stainless steel insertion bar and completely welded together. There are NO internal o-rings or seals of any kind and absolutely NO leak paths into the sensors or electronics. Our sensors NEVER touch the process fluid giving them an almost unlimited life span. Our elements are ONE-PIECE technology and geometry will NEVER change.

With over 100 years of combined CNC machining experience our solid stainless steel **TITAN** vortex element has no pins, screws or gaskets of any kind. The bluff body and tail piece are CNC machined from the body of the element. Since there are no holes to clog and no moving parts, there are no mechanical limitations due to frequency or velocities. Our machined elements will never wear or move out of place, giving the same steady frequency from the first day to year thirty.

Each **TITAN** comes with its own seal assembly that rides along the shaft of the insertion bar. This stainless steel seal assembly has a 1" NPT connection for easy connect and disconnect with any valve, thread-o-let or any ANSI class flange. The **TITAN** can be installed or removed during flow with a 1" fully ported ball valve during higher pressure applications.

The unique design of the **TITAN** can be used in BTU measurement calculations for LIQUID lines. The same **TITAN** design can measure water as low as slow as 1 feet per second to excess of 30 feet per second.

The **TITAN** has no moving or wearing parts making certain that the K Factor, pulses per foot – per second, will not change over time and long term accuracy is always constant. This allows all of our insertion instruments to achieve an accuracy of $\pm 1\%$ of reading with $\pm .25\%$ repeatability.

The **TITAN** has dual Thermistors for temperature measurement with accuracies of \pm .1 °C. All Thermistors are epoxy coated, precision matched to 5 standardized resistance curves. Maximum working temperature is 150°C.

Where Flow Measurement Meets Innovation...

tel: 732.952.5324 fax: 732.727.8911 <u>sales@niceinstrumentation.com</u> www.niceinstrumentation.com

Application Guide

Madal Linuid Coo	Liquid	0.55	Gas Steam	Steem	Steam	Steam	Hot	Temperat	ure Range	Maximum	n Pressure	Line	e Sizes
Model	Liquia	Gas	Steam	Тар	۴	°C	PSI	Bar	in	mm			
TITAN	Yes	Yes	Yes	Yes	-250 to 450	-250 to 218	500	34	1.5 to 36	36 to 900			

NOTE: The same meter can be used in Steam, Gas and Liquids. The insertion bar and sensors are universal among all process fluid types.

Performance Specifications

Accuracy (linear ranges)

Liquid.....<u>+</u> 1.0% of flow rate

Test conditions: Water at 65 °F (18.3 °C), 50 psig (3.4 bar) with 10 pipe diameters upstream and 5 pipe diameters downstream

Gas.....<u>+</u> 1.0% of flow rate

Test conditions: Air at $\overline{65}$ °F (18.3 °C), 25 psig (1.7 bar) with 10 pipe diameters upstream and 5 pipe diameters downstream

Repeatability + .25% of flow rate

BTU/Flow Rate

Adjustable from: 1 second 1 minute 1 hour 1 day

Response Time

1 - 1000 seconds

Analog Output

Calibrated to .001mA of reading

Operating Specifications

Linear Range

Reynolds number from 10,000 to 7,000,000 Measurement Range may vary depending on density

Measurable Flow Velocities

Liquid Flow	English	Metric			
V _{min.}	.985 ft/s	.300 m/s			
V _{max.}	32 ft/s 9 m/s				
Gas Flow	English	Metric			
V _{min.}	$\sqrt[3]{\left(\frac{140}{\rho}\right)}$ ft/s	$\sqrt[3]{\left(\frac{143}{\rho}\right)}$ m/s			
V _{max.}	300 ft/s	91 m/s			
Where:	ρ = density (lb/ftз)	ρ = density (kg/mȝ)			

tel: 732.952.5324 fax: 732.727.8911 sales@niceinstrumentation.com www.niceinstrumentation.com

Operating Specifications & Functions

Ambient Temperature Limit

32 to 145 °F (0 to 61 °C)

Ambient Humidity Limit

5 to 100% relative humidity non-condensing

Power Requirements

Standard

Isolated 14 - 36 VDC

Optional

110 / 220 VAC

Note: All power supplies come standard with NEMA 4X explosion proof enclosures and watertight multipole power connectors.

Output Signals

Analog

4 – 20 mA, 2 – wire system, auto digitally adjusted span, Pulse, Fractional Pulse, MODBUS.

Display

6 Digits of Rate w/ Floating Decimal Available in all Engineering Units

8 Digits of Total Available in all Engineering Units

Serial Port

For Reading and Loading Operating Parameters

Microtel Smart TX (Local & Remote)

Operator Interface

Continuously displays both BTU rate and total including all engineering units

2 lines, 16 characters each line, alphanumeric, reflective L.C.D. display

Field calibration with local keypad

Electronics are universal among all Nice vortex meter types

Diagnostics & Setup

Serial communication for computer Interface

Alphanumeric error messages displayed For turbulent or erratic flow, flow above or below the calibrated range, and high flow or low flow cut off points

Materials

Wetted Parts of Meter

304L or 316L C&C Machined Stainless Steel.

External Parts

304L or 316L C&C Machined Stainless Steel.

Electrical Enclosure Specifications

Aluminum double sided standard enclosure

(OPTIONAL) <u>NEMA 4X explosion, dust,</u> and water proof requirements.

FM Approved UL Classified CSA Approved ATEX for use in;

Class I, Groups B,C & D, Class II, Groups E,F & G and Class III hazardous locations as defined by the National Electrical Codes and Canadian Electrical Code.

Process Connection

TITAN ...1" NPT or Flange ANSI

Seal Assembly

Screws down into a 1" NPT connection. Slides along shaft of insertion bar for a leak free installation.

Seal assembly allows the insertion bar to slide into the process. An arrow is CNC machined into the top of the insertion bar which must point down stream allowing for precise vortex shedding and signal generation.

Comes standard in 304L Stainless Steel.

Remote Mountable Electronics (Standard)

Available up to 300 ft (90.144m) from meter. Uses genuine TURCK plugs and cord sets.

Includes 383 Aluminum Enclosure

(OPTIONAL)

Approved for NEMA 4X watertight and explosion proof requirements.

Measurable Flow Rates

	Water Minimum and Maximum Flow Rates												
in.	2	16	24	36									
(mm)	(50)	(400)	(600)	(900)									
gpm	9.1	22.4	35.7	80.5	143.5	322	507.5	1,155	2,618				
	315	700	1210	2750	4700	11,166	16,625	38,500	88,046				
m³/h	3	4.5	10	19	39	98	150	355	855				
	70	160	270	625	1,065	2,380	3,775	8,570	20,052				

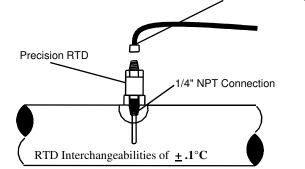
1. Standard conditions of 68 °F (20 °C) in schedule 40 pipe

Straight Run Piping Requirements	Upstream	Downstream
One 90° elbow before the meter	10 D	5 D
Two 90° elbows before the meter	15 D	5 D
Two 90° elbows out of plane before the meter	30 D	5 D
Reduction before meter	10 D	5 D
Regulator or Valve partially closed before meter	30 D	5 D
Tee Connection before meter	30 D	5 D

D is equal to the internal diameter of the pipe.

Other Installation Considerations

Mounting Position

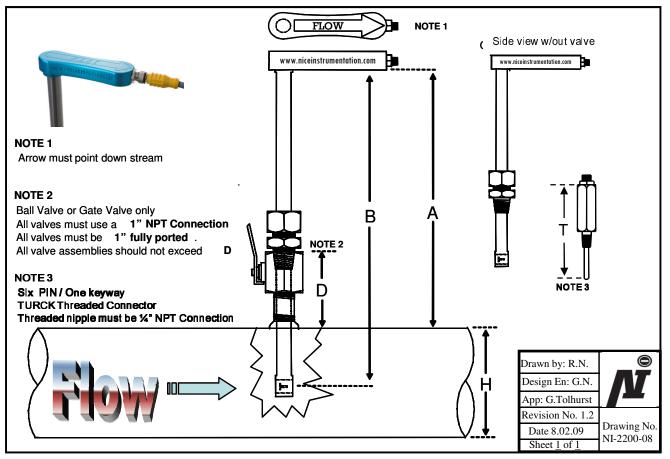

The TITAN can be installed in almost any orientation around the pipe. Vertically, horizontally or angled pipe sections are a good spot to install the TITAN. The mounting assembly will insure that the meter is attached perpendicular to the axis of the pipe. The TITAN should not be installed "upside-down". For liquid applications, the fluid must completely fill the pipe

Site Selection

The flow measurement location should be selected to minimize turbulence and swirl. The more laminar the flow profile the better the site location. The extent of the flow turbulence depends on what type of piping is upstream and downstream from the meter. (Please see straight run piping requirements above) Valves, elbows, regulators, pumps, tee connections, and other piping components may add disturbances to the flow.

RTD Probe

The RTD probe can be inserted in any line size through a 1/4" NPT connection. Assembly off pipe cannot be any higher than 1" to ensure proper insertion depth. TURCK Remote Plug / Cable

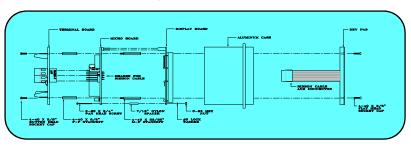


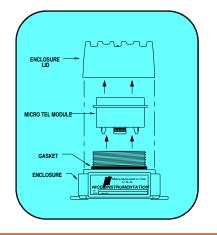
Where Flow Measurement Meets Innovation...

tel: 732.952.5324 fax: 732.727.8911 sales@niceinstrumentation.com

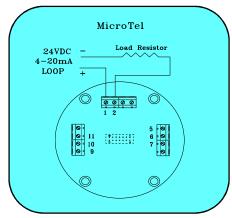
Dimensions and Weights

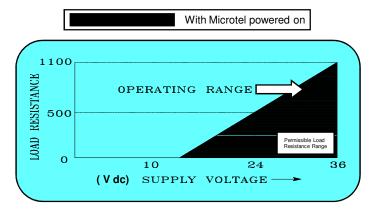
Dimension Tables

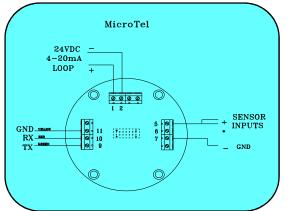

Model	Connection	н		on H				(should not exceed) D		т	
		in.	mm	in.	mm	in.	mm	in.	mm	in.	mm
ΤΙΤΑΝ	1 " NPT	1.5	36	11.25	281.3	12	300	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	2	50	11	275	12	300	6	150	4.6	115
ΤΠΑΝ	1 " NPT	4	100	10	250	12	300	6	150	4.6	115
ΤΠΑΝ	1 " NPT	6	150	9	225	12	300	6	150	4.6	115
ΤΠΑΝ	1 " NPT	8	200	14	350	18	450	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	10	250	13	325	18	450	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	12	300	12	300	18	450	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	14	350	11	275	18	450	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	16	400	10	250	18	450	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	18	450	9	225	18	450	6	150	4.6	115
ΤΠΑΝ	1 " NPT	20	500	14	350	24	600	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	22	550	13	325	24	600	6	150	4.6	115
ΤΠΑΝ	1 " NPT	24	600	12	300	24	600	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	26	650	11	275	24	600	6	150	4.6	115
ΤΠΑΝ	1 " NPT	28	700	10	250	24	600	6	150	4.6	115
ΤΙΤΑΝ	1 " NPT	30	750	9	225	24	600	6	150	4.6	115
ΤΠΑΝ	1 " NPT	32	800	8	200	24	600	6	150	4.6	115
ΤΠΑΝ	1 " NPT	34	850	7	175	24	600	6	150	4.6	115
ΤΠΑΝ	1 " NPT	36	900	6	150	24	600	6	150	4.6	115



Dimensions and Weights

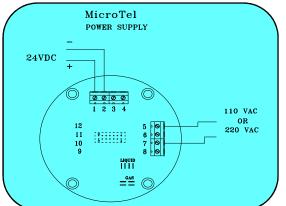

Microtel Assembly




Internal Wiring Diagrams

Microtel Load Resistance

Microtel Internal Wiring



VDC Power: Analog Output

Scalable 4-20mA output, complete 2 wire device. Load resistor may be installed on supply or return line. $V_s = 14-36$ VDC. See graph above.

Where Flow Measurement Meets Innovation...

Microtel Power Supply Wiring

VAC Power: Analog Output

Scalable 4-20mA output, complete 2 wire device. Load resistor may be installed on supply or return line.

> tel: 732.952.5324 fax: 732.727.8911 <u>sales@niceinstrumentation.com</u> www.niceinstrumentation.com

Model # TITAN-XX-X(XX)-XX-XX

Category	Description		Su	uffix Co	des	
TITAN IV TITAN IV/BTU	Insertion Vortex Flow Meter Insertion Vortex Flow Meter with BTU calculation.	TITAN	_	_	_	_
Line Sizes	Standard line sizes 1.5" to 36"		1.5 36			_
Microtel Transmitter Display	Volumetric Flow Only Total BTU calculations (1 external Temperature sensor)	_		V BTU		_
Power Supply	Standard 24 V dc input			_ _ _	24 	
-250 to 450 °F -	Standard Temperature -250 to 450 °F	_ _	_	_	_	LT — —

Notes:

- 1. Your registered representative will use Nice Instrumentation Vortex Sizing Application to determine precise scaling factor for your application.
- 2. The Standard remote option comes with 10 feet from meter.
- 3. Unit has 4-20mA output
- 4. OPTIONAL Enclosure for remote display is NEMA 4X watertight and explosion proof requirements.

FM Approved

- UL Classified
- CSA Approved
- ATEX for use in;
- Class I, Groups B,C & D,
- Class II, Groups E,F & G and
- Class III hazardous locations as defined by the National Electrical Codes
- and Canadian Electrical Code.

Nice Vortex Sizing Program for precise application sizing

Please specify the following information with your order:

- Fluid Type
- Min Max operating flow rate
- Operating Temperature
- Operating Pressure

tel: 732.952.5324 fax: 732.727.8911 <u>sales@niceinstrumentation.com</u> www.niceinstrumentation.com

Other Products from...

Remote Vortex Plate

Nice Instrumentation, Inc. 999 Route 9 Parlin, NJ 08859

Phone: 1-732-952-5324 Fax: 1-732-727-8911

sales@niceinstrumentation.com www.niceinstrumentation.com

Vortex Plate

- Worlds only 3/4"
 thin vortex plate
- Solid stainless
 steel construction

Flanged Vortex Plate

 Measures two times lower than any other vortex flow meter.

Continental Control Systems

HE WATTNODE MODBUS is a multi-function networked energy meter. The WattNode MODBUS offers true RMS power, energy and demand metering, plus individual phase measurements of voltage, current, power factor, reactive power and energy, and line frequency. Typical applications include energy monitoring, sub-metering, demand management, power factor control and phase-load monitoring.

NETWORKING the WattNode MODBUS is easy. The WATTNODE communicates over a half-duplex

EIA RS-485 interface. Standard baud rates are 9,600 and 19,200 baud. The WattNode uses the industry standard MODBUS RTU (binary) communication protocol, allowing up to 127 WattNodes per RS-485 subnet.

EASE OF USE and economy of installation were key design criteria. The WattNode MODBUS' compact size permits installation inside of most electrical service panels and junction boxes. Diagnostic LEDs help insure fast, easy, and correct installation. Detachable screw terminals make wiring a snap. The WattNode MODBUS is line-powered and requires no separate power source.

ACCURACY of the WattNode MODBUS is 0.5% nominaly (see manual for details). Even with leading or lagging power factor and chopped or distorted wave forms, the WattNode MODBUS measures true RMS power. This makes it ideal for monitoring motors and pumps controlled by variable speed drives or loads with switching power supplies.

THE COMPLETE LINE of WattNode MODBUS models measures 1, 2, or 3 phases in 2, 3, or 4 wire configurations with nominal voltages from 120 to 600 VAC at 50/60 Hz. Operation from 5 to 5000 Amps is possible by selecting from our line of safe, low-voltage output, current transformers.

3131 Indian Road, Suite A Boulder, CO 80301 USA (303) 444-7422 Fax (303) 444-2903 sales@ccontrolsys.com www.ccontrolsys.com

Toll-Free (888) 928-8663

WATTNODE[®] MODBUS

AC Power Measurement for MODBUS Networks

KVAR

кWн

EMAND

Volts

PEAK DEMAND

FREQUENCY

• Multiple Measurements kW, kWh, Demand, kVAR, kVARh, PF, Amps, Volts, Frequency

• MODBUS Network Ready Communicates over a half-duplex EIA RS-485 interface

Compact Size
 Fits inside of standard electrical
 panels and junction boxes

 Auto-Correcting Polarity Auto-detects RS-485 A/B polarity on properly biased networks, simplifying installation.

- Measures 1¢, 2¢, 3¢ Circuits Flexible, field configurable
- Line Powered
 No external power supply
 required

PF

• Two Baud Rates 9,600 and 19,200 baud

 Full RS-485 Subnet
 127 WattNode's per RS-485 subnet.

Specifications

uantities Measured

True RMS Power - Watts (Phase A, B, C, Sum) Reactive Power - VARs (Phase A, B, C, Sum) Power Factor (Phase A, B, C, Average) True RMS Energy - Watthours (Phase A, B, C, Sum) Reactive Energy - VAR-hours (Sum) AC Frequency RMS Voltage (Phase A, Phase B, Phase C) RMS Current (Phase A, Phase B, Phase C) Demand and Peak Demand

Measurement Configuration

Three phase: 3-wire or 4-wire Single phase: 2-wire or 3-wire

User Controlled Inputs

Set CT size in amps Set demand window type and period Reset peak demand to zero

Accuracy

0.5% nominal (see manual for details).

Electrical

Operating Voltage Range: 80% - 115% of nominal Power Line Frequency Range: 50 to 60 Hz

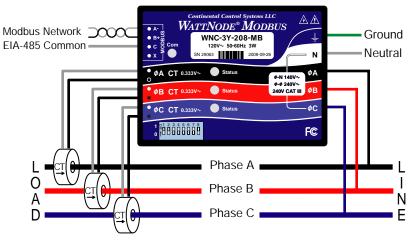
Environmental

-30°C to +55°C (-22°F to 131°F) Humidity: 5 to 90% RH (noncondensing)

Mechanical

Enclosure: High impact, ABS plastic Flame Resistance Rating: 94V-0, IEC FV-0 Size: 5.63" × 3.34" × 1.5" (143mm × 85mm × 38mm) Weight: 10.8 oz (305 gm) Connectors: Euroblock style pluggable terminal blocks

MODBUS Communication


EIA RS-485 Interface Baud Rates: 9,600 and 19,200 Duplex: Half (two-wire plus common) Parity: N81 (no parity, eight data bits, one stop bit) MODBUS Buffer: 256 bytes Response Time: 5 - 300 milliseconds

MADE IN THE USA

(888) 928-8663

WATTNODE[®] MODBUS

AC Power Measurement for MODBUS

MODELS

Model	VAC	VAC	Phases	Wires
	Line To N	eutral Line To	Line	
WNC-3Y-208-N	1B 120	208-24	40 3*	4
WNC-3Y-400-N	1B 230	400	3*	4
WNC-3Y-480-N	1B 277	480	3*	4
WNC-3Y-600-N	1B 347	600	3*	4
WNC-3D-240-N	/IB N/A	208-24	40 3	3
WNC-3D-400-N	/IB N/A	400	3	3
WNC-3D-480-N	/IB N/A	480	3	3
*Combourded		1 0	si na vita	

*Can be used to measure 1, 2 or 3 phase circuits.

OPENING CURRENT TRANSFORMERS (SPLIT CORE)

Model	Inside Diamet	er Rated Amps
CTS-0750	0.75"	5, 15, 30, 50, 70, 100, 150, 200
CTS-1250	1.25"	70, 100, 150, 200, 250, 300, 400, 600
CTS-2000	2.00"	600, 800, 1000, 1200, 1500
CTB		600, 800, 1200, 2000, 3000 (custom)

TOROIDAL CURRENT TRANSFORMERS (SOLID CORE)

Model	Inside Diameter	r Rated Amps
CTT-0300	0.30"	5, 15, 20, 30
CTT-0500	0.50"	15, 20, 30, 50, 60
CTT-0750	0.75"	30, 50, 70, 100
CTT-1000	1.00"	50, 70, 100, 150, 200
CTT-1250		70, 100, 150, 200, 250, 300, 400
Current Tran	sformer Output Voltage: 0 -	0.333 VAC @ rated current

Continental Control Systems 3131 Indian Road, Suite A Boulder, CO 80301 (303) 444-7422 Fax (303) 444-2903 sales@ccontrolsys.com www.ccontrolsys.com • F-1111 SINGLE TURBINE • INSERTION FLOW METER ISOLATED ANALOG OUTPUT

Made in the USA

DESCRIPTION

ONICON insertion turbine flow meters are suitable for measuring electrically conductive water-based liquids. The F-1111 model provides isolated 4-20 mA and 0-10 V analog output signals that are linear with the flow rate.

APPLICATIONS

- Closed loop chilled water, hot water, condenser water & water/glycol/brine solutions for HVAC
- Process water & water mixtures
- Domestic water

GENERAL SPECIFICATIONS

ACCURACY

- \pm 0.5% of reading at calibrated velocity
- ± 1% of reading from 3 to 30 ft/s (10:1 range)
- \pm 2% of reading from 0.4 to 20 ft/s (50:1 range)

SENSING METHOD

Electronic impedance sensing

(non-magnetic and non-photoelectric)

PIPE SIZE RANGE

1¼" through 72" nominal diameter **SUPPLY VOLTAGE**

24 ± 4 V AC/DC at 100 mA LIQUID TEMPERATURE RANGE

Standard: 180° F continuous, 200° F peak High Temp: 280° F continuous, 300° F peak Meters operating above 250° F require 316 SS construction option

AMBIENT TEMPERATURE RANGE -5° to 160° F (-20° to 70° C)

OPERATING PRESSURE 400 PSI maximum

PRESSURE DROP

Less than 1 PSI at 20 ft/s in 1¹/₂" pipe, decreasing in larger pipes and lower velocities

OUTPUT SIGNALS PROVIDED

Analog Outputs (isolated) Voltage output: 0-10 V (0-5 V available) Current output: 4-20 mA Frequency Output

0-15 V peak pulse, typically less than 300 Hz

(continued on back)

CALIBRATION

Every ONICON flow meter is wet calibrated in our flow laboratory against primary volumetric standards that are directly traceable to N.I.S.T. A certificate of calibration accompanies every meter.

FEATURES

Unmatched Price vs. Performance - Custom calibrated, highly accurate instrumentation at very competitive prices.

Excellent Long-term Reliability - Patented electronic sensing is resistant to scale and particulate matter. Low mass turbines with engineered jewel bearing systems provide a mechanical system that virtually does not wear.

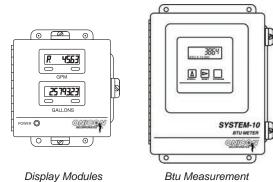
Industry Leading Two-year "No-fault" Warranty -

Reduces start-up costs with extended coverage to include accidental installation damage (miswiring, etc.) Certain exclusions apply. See our complete warranty statement for details.

Simplified Hot Tap Insertion Design -

Standard on every insertion flow meter. Allows for insertion and removal by hand without system shutdown.

OPERATING RANGE FOR COMMON PIPE SIZES 0.17 TO 20 ft/s ±2% accuracy begins at 0.4 ft/s									
Pipe Size (Inches) 1 ¹ / ₄ 1 ¹ / ₂ 2 2 ¹ / ₂ 3 4 6 8 10 12 14 16 18 20 24 30	-								
36	510 - 60,900								

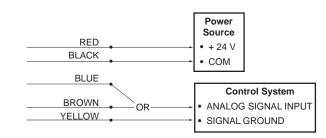

F-1111 SPECIFICATIONS (cont.)

MATERIAL

Wetted metal	components:
Standard:	Electroless nickel plated brass
Optional:	316 stainless steel
ELECTRONICS	S ENCLOSURE
Standard:	Weathertight aluminum enclosure
Optional:	Submersible enclosure
ELECTRICAL (CONNECTIONS
4-wire minin	num for 4-20 mA or 0-10 V output
Second analo	og output and/or frequency output
requires ad	ditional wires
Standard:	10' of cable with ½" NPT
	conduit connection
Optional:	Indoor DIN connector with 10'

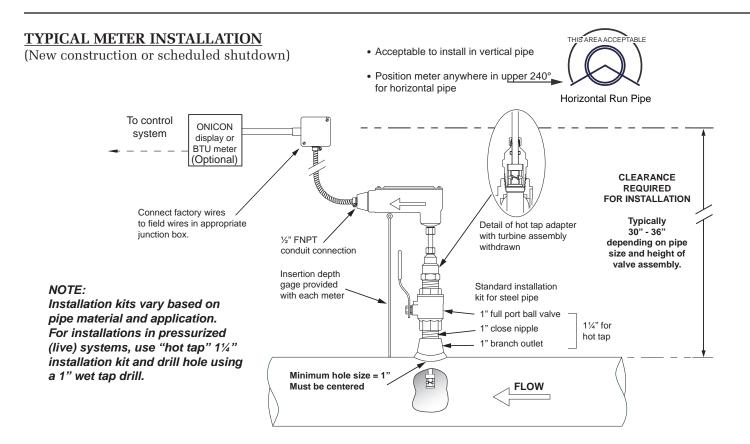
Optional: Indoor DIN connector with 10 of plenum rated cable

ALSO AVAILABLE


Systems

F-1111 WIRING INFORMATION

WIRE COLOR	DESCRIPTION	NOTES
RED	(+) 24 V AC/DC supply voltage, 100 mA	Connect to power supply positive
BLACK	(-) Common ground (Common with pipe ground)	Connect to power supply negative
GREEN	(+) Frequency output signal:0-15 V peak pulse	Required when meter is connected to local display or Btu meter
BLUE	(+) Analog signal: 4-20 mA (isolated)	Use yellow wire as (-) for these signals. Both signals may
BROWN	(+) Analog signal: 0-10 V (isolated)	be used independently.
YELLOW	(-) Isolated ground	Use for analog signals only


F-1111 WIRING DIAGRAM

Flow meter into control system (no display or Btu meter)

NOTE:

 Black wire is common with the pipe ground (typically earth ground).
 Frequency output required for ONICON display module or Btu meter, refer to wiring diagram for peripheral device.

Temperature

TB & TRA Series

High Accuracy Specialty Sensors

FEATURES

TB Pipe Surface Sensor

- Secondary measurement of water temperature...ideal for retrofit applications
- Pipe clamps allow for easy installation on pipes up to 12" in diameter

TRA Probe Sensor

- Durable stainless steel sensing probe for long sensor life
- Multiple cable lengths for application flexibility

DESCRIPTION

The **TB** strap-on sensor uses a clamp to secure the unit to a pipe and a copper sensing plate for fast temperature response. The TB is perfect for secondary measurement of water temperature typical in retrofit applications. It includes a steel mounting box for wire termination and easy conduit connection.

The **TRA Series** stainless steel remote probe is designed for high accuracy in remote temperature sensing applications. The TRA can be used in numerous refrigeration applications or can be mounted on pipes for chilled or heated water temperature sensing. It is easily installed and includes a durable stainless steel sensing probe and a two-wire twisted pair wire with strain relief. Multiple cable lengths are available for added flexibility.

147.4	
Wiring	22 AWG; 2-wire: RTD/Thermistor
T	EMPERATURE TRANSMITTER OPTION
Input Power	4-20mA models: Loop powered Class 2, 12-30VDC only, 30mA max;
	0-5/0-10V models: Class 2, 12-30VDC/24VAC, 50/60Hz, 15mA max
Temp Output	2-wire, loop powered 4-20mA
Sensor Type	Thermistor/RTD
Accuracy	±.1°C*
Ranges	-25° to 105°C (available ranges; model number specifies exact range)
	LINITEMP OPTION
Input Power	Class 2; 5 to 30VDC
Output	10mV/°C
Calibration Error	1.5°C (2.7°F) typical; 2.5°C (4.5°F) max. at 25°C (77°F)*
Error over Temp	1.8°C (3.24°F) typical; 3.0°C (5.4°F) max. over 0° to 70°C (32° to 158°F) range;
	2.0°C (3.6°F) typical, 3.5°C (6.3°F) max. over -25° to 105°C (-13° to 221°F) range
Operating Temp TB TRA	-25° to 105°C (-13° to 221°F) Probe -25° to 105°C (-13° to 221°F), Wiring -20° to 80°C (-4° to 176°F)

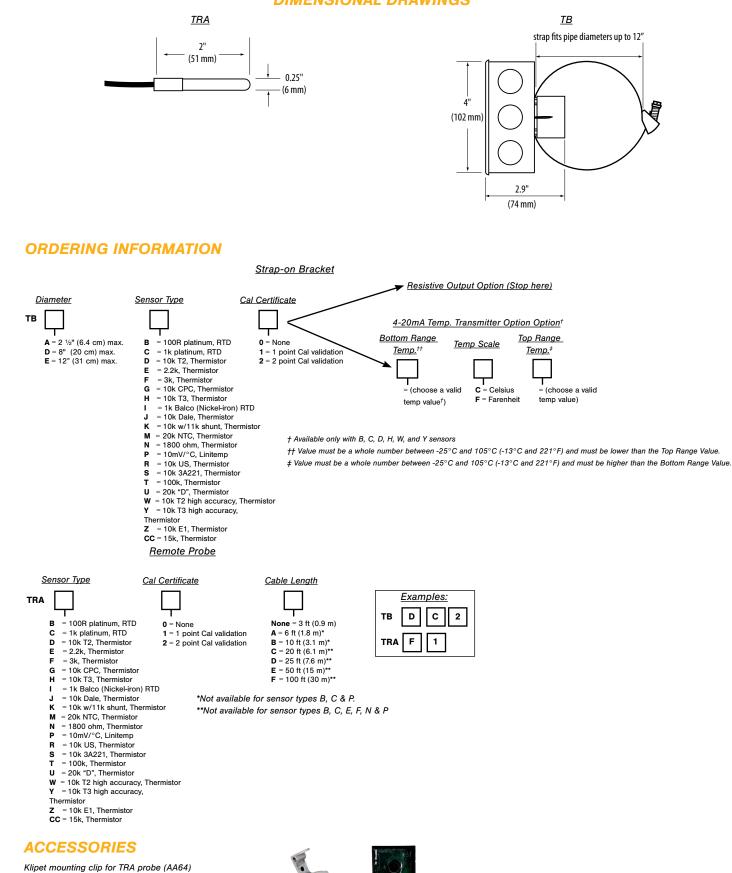
* Add the transmitter accuracy to the RTD/thermistor accuracy to get the total product accuracy. For RTD and thermistor accuracies and ranges, see the table below.

**Room temperature error documented on each unit.

To compute Linitemp temperature:

5 Year

mV reading/10 - 273.15 = Temperature in °C


Pt RTD THERMISTOR Class **Balco RTD** Туре 100 Ohm 1000 0hm 1000 Ohm 2.2k 3k 10k Type 2 10k Type 3 10k Dale 10k 3A221 10k "G" US 20k 20k "D' 100k 10k Type 2 10k Type 3 ±0.3°C ±0.3°C ±1%@70°C ±0.2°C ±0.2°C ±0.1°C 20/70°C ±0.1°C ±1.0°C ±0.2°C ±0.2°C ±1.1℃ ±0.2°C Consult Consult Accuracy Consult 0.00385 0.00385 0/70°C -50/150°C 0/70°C 0/70°C 0/70°C -20/70°C 0/70°C 0/70°C Factory Factory Factory ±0.2°C 0/20°C CUITVE curve PTC NTC NTC NTC NTC NTC NTC NTC Temp. Response* PTC PTC NTC NTC NTC NT NTC High Accuracy

*PTC: Positive Temperature Coefficient *NTC: Negative Temperature Coefficient

STANDARD RTD AND THERMISTOR VALUES (Ohms Ω)																
°C	°F	100 Ohm	1000 Ohm	1000 Ohm	2.2k	3k	10k Type 2	10k Type 3	10k Dale	10k 3A221	10k <i>"</i> G" US	20k NTC	20k "D"	100k	10k Type 2	10k Type 3
-50	-58	80.306	803.06	740.46	154,464	205,800	692,700	454,910	672,300	-	441,200	1,267,600	-	-	692,700	454,910
-40	-40	84.271	842.71	773.99	77,081	102,690	344,700	245,089	337,200	333,562	239,700	643,800	803,200	3,366,000	344,700	245,089
-30	-22	88.222	882.22	806.02	40,330	53,730	180,100	137,307	177,200	176,081	135,300	342,000	412,800	1,770,000	180,100	137,307
-20	-4	92.160	921.60	841.00	22,032	29,346	98,320	79,729	97,130	96,807	78,910	189,080	220,600	971,200	98,320	79,729
-10	14	96.086	960.86	877.46	12,519	16,674	55,790	47,843	55,340	55,252	47,540	108,380	122,400	553,400	55,790	47,843
0	32	100.000	1,000.00	913.66	7,373	9,822	32,770	29,588	32,660	32,639	29,490	64,160	70,200	326,600	32,770	29,588
10	50	103.903	1,039.03	952.25	4,487	5,976	19,930	18,813	19,900	19,901	18,780	39,440	41,600	199,000	19,930	18,813
20	68	107.794	1,077.94	991.82	2,814	3,750	12,500	12,272	12,490	12,493	12,260	24,920	25,340	124,900	12,500	12,272
25	77	109.735	1,097.35	1,013.50	2,252	3,000	10,000	10,000	10,000	10,000	10,000	20,000	20,000	100,000	10,000	10,000
30	86	111.673	1,116.73	1,035.18	1,814	2,417	8,055	8,195	8,056	8,055	8,194	16,144	15,884	80,580	8,055	8,195
40	104	115.541	1,155.41	1,077.68	1,199	1,598	5,323	5,593	5,326	5,324	5,592	10,696	10,210	53,260	5,323	5,593
50	122	119.397	1,193.97	1,120.52	811.5	1,081	3,599	3,894	3,602	3,600	3,893	7,234	6,718	36,020	3,599	3,894
60	140	123.242	1,232.42	1,166.13	561.0	747	2,486	2,763	2,489	2,486	2,760	4,992	4,518	24,880	2,486	2,763
70	158	127.075	1,270.75	1,210.75	395.5	527	1,753	1,994	1,753	1,751	1,990	3,512	3,100	17,510	1,753	1,994
80	176	130.897	1,308.97	1,254.55	284.0	378	1,258	1,462	1,258	1,255	1,458	2,516	2,168	12,560	1,258	1,462
90	194	134.707	1,347.07	1,301.17	207.4	-	919	1,088	917	915	1,084	1,833	1,542	9,164	919	1,088
100	212	138.506	1,385.06	1,348.38	153.8	-	682	821	679	678	816.8	1,356	1,134	6,792	682	821
110	230	142.293	1,422.93	1,397.13	115.8	-	513	628	511	509	623.6	1,016	816	5,108	513	628
120	248	146.068	1,460.68	1,447.44	88.3	-	392	486	389	388	481.8	770	606	3,894	392	486
130	266	149.832	1,498.32	1,496.28	68.3	-	303	380	301	299	376.4	591	456	3,006	303	380
Sensor	Codes	В	C	I	E	F	D	н	J	S	R	м	U	T	W	Y

DIMENSIONAL DRAWINGS

Klipet mounting clip for TRA probe (AA64) Temperature range converter, resistive to 4-20mA (AA10xxxx)

