# MONITORING PLAN FOR GOLUB HEADQUARTERS CCHP PROJECT 

March 1, 2010

Submitted to:
New York State Energy Research and Development Authority
17 Columbia Circle
Albany, NY 12203-6399

Submitted by:
Carrier Corporation
PO Box 4808, Bldg TR-7A
Syracuse, NY 13221
(315)-432-3900

On Behalf of
Golub Corporation
1520 Maxon Road
Schenectady, NY 12305
PON 1241 Agreement No. 11183

## Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan

## TABLE OF CONTENTS

Description Page No.
Project Information ..... 1
System Overview ..... 2
Power Generating Equipment ..... 3
Heat Recovery System ..... 4
Facility Load Details ..... 4
System Schematics ..... 4 ..... 4
Description of Monitored Points ..... 9
Microturbine Power Output ..... 9
Microturbine Gas Input ..... 9
Temperature and Flows ..... 10 ..... 10
Parasitic Power ..... 10
Data Collection and Retention System ..... 10
Calculations ..... 11 ..... 11

## APPENDICES:

Appendix A: UTC Power Proposal/Feasibility Study for PON 1241
Appendix B: Electrical One Line Diagrams Building Equipment Schedules PureComfort Technical Information Beckwith Protective Relay Technical Information

Appendix C: Metering and Sensor Equipment Cut Sheets and Product Data
Appendix D: Data Acquisition System Product Information

# Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan 

## TABLE LIST

Table Page No.
1.0 Performance Specifications for PureComfort® Model 195M ..... 3
2.0 Additional Equipment ..... 4
3.0 Data Point List ..... 9
4.0 One Time Measured Data Collected ..... 10

# Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan 

## FIGURE LIST

Figure
Page No.
1.0 Photo of Microturbines during installation ..... 2
2.0 Absorption Chiller during installation ..... 3
3.0 Building Chilled Water Schematic
5
5
4.0 Building Hot Water Schematic
6
6
5.0 Building Condenser Water Schematic ..... 7
6.0 System Schematic showing sensor locations ..... 8

## Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan

## Project Information

Carrier Corporation is the ESCO for the new Golub Headquarters Office Building combined cooling, heat and power plant project. This M\&V plan is specifically written for this project's participation in NYSERDA's PON 1241 - for Distributed Generation as Combined Heat and Power. This project consists of designing, building, operating and maintaining a 195 kW microturbinebased combined cooling heat and power (CCHP) plant at the new Golub / Price Chopper headquarters office building.

The Carrier Contact person for M \& V information:

Erin Ordway<br>Carrier Corporation<br>PO Box 4808 Building Tr-7A<br>Syracuse, New York 13221

Telephone: (315) 432-3936
Fax: (315) 432-3975
E-Mail: Erin.Ordway@carrier.utc.com

The "Site" is:
Golub Headquarters Office Building 1520 Maxon Road
Schenectady, NY 12305

## Golub Corporation Headquarters Office Building Measurement \&Verification Plan

This document describes the measurements, sensors, and data logging equipment proposed to quantify the performance of the combined cooling heat and power plant being installed at the new Golub headquarters in Schenectady, NY. The planned CCHP system for the Golub headquarters office building will provide electricity to displace purchases from the local utility, and thermal energy in the form of chilled water and hot water to support the building space conditioning needs. The microturbine is expected to operate at full power continuously, and maintain high overall annual efficiency by providing heating and/or cooling on demand.

## System Overview:

The CCHP system is designed as a permanent installation. The standard operating mode will be for the microturbines to operate in parallel with the local utility, providing a total of 180 kW net electrical power. The CCHP plant is also designed to provide up to 180 kW of grid-independent power to critical loads, including the ability to provide "flicker-free" power to a subset of these loads. The microturbines are able to transition automatically to grid-independent operation upon loss of grid power and have black start capability to start up without the utility grid. The office building will also be equipped with a 2000 kW diesel back-up generator.

The installation of the microturbine based CCHP system will provide electricity, cooling and heating. The CCHP system will consist of one UTC Power PureComfort ${ }^{\circledR}$ Model 195M system, which is composed of three 65 kW microturbines (Figure 1.) and one exhaust-driven absorption chiller (Figure 2.). The microturbines are located on the roof of the building and the absorption chiller heater is installed in the penthouse mechanical room that houses the building's three natural gas-fired hot water boilers and two electric chillers. See Appendix A for reference to the UTC Power Corporation's proposal for PON 1241 for this facility.


[^0]
## Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan



Figure 2. Absorption Chiller during installation

## Power Generating Equipment:

The PureComfort® Model 195M includes three Capstone microturbines that provide $195 \mathrm{~kW}, 480$ VAC, 3 Phase, 60 Hz . The fuel input for the microturbines is natural gas. There is a gas pack booster for each microturbine to boost the fuel supply pressure to the microturbines to 75 psig . See Table 1 for performance data. Additional technical information and equipment schedules are located in Appendix B for reference.

|  | ISO Day $-59^{\circ} \mathrm{F}$ Simultaneous Mode |
| :--- | :--- |
| Gross Power Output | 195 kW |
| Net Power Output | 180 kW |
| Cooling Output | 125 RT |
| Heating Output Max $140^{\circ} \mathrm{F}$ | 904 MBh |
| Gas Consumption, LHV | $2,295 \mathrm{MBh}$ |
| Total Efficiency - Power and Cooling, LHV | $92 \% \mathrm{Net}$ |
| Total Efficiency - Power and Heating, LHV | $66 \% \mathrm{Net}$ |
| Microturbine Exhaust Gas Temp. | $568^{\circ} \mathrm{F}$ |
| Chiller Exhaust Temp. Heating / Cooling | $239^{\circ} \mathrm{F} / 226^{\circ} \mathrm{F}$ |

Table 1. Performance Specifications for PureComfort ${ }^{\circledR}$ Model 195M

# Golub Corporation Headquarters Office Building Measurement \&Verification Plan 

## Heat Recovery System:

The PureComfort® Model 195M utilizes a UTC Power-proprietary, high-efficiency, double-effect absorption chiller/heater to provide energy in the form of either hot or chilled water. The chiller will provide chilled water to the building central chilled water system in parallel with the facility's electric chillers. Hot water from the chiller will be used as a pre-heater for the building hydronic system. The PureComfort® can be controlled to provide cooling and heating simultaneously, with priority given to either heating or cooling (see above Table 1. for heating and cooling performance specifications). See Table 2. for equipment nameplate data that will be operating in parallel with the CCHP.

| Identifier | Manufacturer | Capacity |
| :---: | :---: | :---: |
| CH-1 | York: YKDRDSQ3-CHG | 250 Tons |
| CH-2 | York: YKDRDSQ3-CHG | 250 Tons |
| B-1 | LOCKINVAR PBN2000 | 1700 MBH (Output) |
| B-2 | LOCKINVAR PBN2000 | 1700 MBH (Output) |
| B-3 | LOCKINVAR PBN2000 | 1700 MBH (Output) |

Table 2. Additional Equipment

## Facility Load Details

The Golub facility is a new six story; 240,000 square foot high-performance office building located in Schenectady, NY and is being constructed in summer and fall of 2009. The planned use of the building is typical office work, with weekday operating hours approximately between 7:00 a.m. and 7:00 pm. and a typical occupancy of 700-800 people. The projected peak electrical load, without the CCHP system, is 850 kW , a peak cooling load of 400 tons, and a peak thermal load of over 5 MMBTU/hr. Total annual consumption was projected to be $2,498,200 \mathrm{kWh}$ and 22,260 MMTBUs of natural gas (without the CCHP).

Without the CCHP system the building would be under National Grid's SC3 T\&D 2.2-15kV tariff. The use of the CCHP system will move the entire building under National Grid's SC7 tariff. Natural gas service to the building will be from National Grid under their SC7 Small Volume Monthly Balancing tariff. There will be one electric utility meter and one gas utility meter.

## System Schematics

The $480 \mathrm{~V}, 60-\mathrm{Hz}$ electrical output from the natural gas powered microtubines (MT 1-3) will be tied into the electrical distribution panels at the facility. The waste heat $\left(568^{\circ} \mathrm{F}\right)$ from the exhaust of the microturbines is used to power the absorption chiller/heater (CH-3). A diverter valve prior to the inlet of the chiller/heater regulates the exhaust gas flow depending on the cooling/heating load requirements. The absorption chiller/heater ( $\mathrm{CH}-3$ ) supplies hot water $\left(140 / 175^{\circ} \mathrm{F}\right)$ to the building hot water loop and chilled water $\left(44^{\circ} \mathrm{F}\right)$ to the building chilled water loop. A cooling tower (CT-1) provides cooling water $\left(74^{\circ} \mathrm{F}\right)$ to the chiller/heater $(\mathrm{CH}-3)$. Figures 3.0, 4.0, and 5.0 are the building system schematics. Figure 6.0 shows the data points that will be monitored continuously.

## Golub Corporation Headquarters Office Building

Measurement \&Verification Plan


Figure 3. Building Chilled Water Schematic

## Golub Corporation Headquarters Office Building

Measurement \&Verification Plan


Figure 4. Building Hot Water Schematic

## Golub Corporation Headquarters Office Building

Measurement \&Verification Plan


Figure 5. Building Condenser Water Schematic

## Golub Corporation Headquarters Office Building

## Measurement \&Verification Plan



Figure 6. System Schematic Showing Sensor Locations

# Golub Corporation Headquarters Office Building 

## Measurement \&Verification Plan

## Description of Monitored Points

Table 3. lists the monitored points required to characterize the performance of the microturbine and absorption chiller heater heat recovery system.

| No <br> a | Data Pt. <br> Name | Description | Units | Sensor | Channel |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | WGB | Building Electric Use | kWh | Electro Industries Shark 200 | Modbus |
| 2 | WGB_kW | Building Power | kW | Electro Industries Shark 200 | Modbus |
| 3 | FGT | Microturbine Gas Use | Cu ft | Master Touch Series 8800MPNH | Analog-1 |
| 4 | WT_kW | Microturbine Power | kW | Electro Industries Shark 100 | Analog-2 |
| 5 | WT | Microturbine Energy | kWh | Electro Industries Shark 100 | Analog-3 |
| 6 | TAO | Ambient Temperature | F | Precon Outside Air Thermistor | Analog-4 |
|  |  |  |  | Type II |  |
| 7 | THWL | Hot Water from Chiller/Heater | F | ACI Thermistor A/CP Type II | Analog-5 |
| 8 | THWE | Hot Water to Chiller/Heater | F | ACI Thermistor A/CP Type II | Analog-6 |
| 9 | TCHL | Chilled Water from Chiller/Heater | F | ACI Thermistor A/CP Type II | Analog-7 |
| 10 | TCHE | Chilled Water to Chiller/Heater | F | ACI Thermistor A/CP Type II | Analog-8 |
| 11 | FHW | Flow Hot Water from Chiller/Heater to | gpm | Data Industrial SDI 200 Series | Analog-9 |
|  |  | Bldg Syst. |  |  |  |
| 12 | FCH | Flow Chilled Water from | gpm | Data Industrial SDI 200 Series | Analog-10 |
|  |  | Chiller/Heater to Bldg Syst. |  |  |  |
| 13 | WCTC1 | CT-1 Fan 1 | kW | ABB Drive Interface | BACnet OIP |
| 14 | WCTC2 | CT-1 Fan 2 | kW | ABB Drive Interface | BACnet OIP |
| 15 | SCWP1 | Condenser Water CP-1 Pump Status | min | Eastern Controls Interface CT | BACnet OIP |
| 16 | SCHPP1 | Chilled Water PP-1 Pump Status | min | Eastern Controls Interface CT | BACnet OIP |
| 17 | SHWPP5 | Hot Water Pump PP-5 Status | min | Eastern Controls Interface CT | BACnet OIP |
| 18 | SCH1 | Electric Chiller CH-1 Status | min | Eastern Controls Interface CT | BACnet OIP |
| 19 | SCH2 | Electric Chiller CH-2 Status | min | Eastern Controls Interface CT | BACnet OIP |
| 20 | SDV | Diverter Valve Position | $\%$ | Carrier Chiller Interface | Modbus |

Table 3. Data Point List

## Microturbine Power Output

The electrical output of the microturbines (WT) will be measured with an Electro Industries Shark 100 utility grade power and energy meter. The parasitic power use of the DC-powered gas compressors and gas pack boosters will be captured in the turbine power (so a separate power transducer is not needed). A valve status sensor (SDV) will determine what percentage of the microturbine exhaust is going to the chiller heater and what is being exhausted into the atmosphere.

## Microturbine Gas Input

The gas input to the turbines (FGT) will be measured by a single insertion style gas flow meter located in the dedicated gas line to the microturbines.

# Golub Corporation Headquarters Office Building 

## Measurement \&Verification Plan

## Temperatures and Flows

The thermal outputs from the chiller/heater will be determined from the flows and temperature differences (FHW, FCH, TCHE, TCHL, THWL, and THWE) in the hot water and chilled water entering and leaving the chiller/heater with a designated flow meter and temperature sensors mounted within thermo-wells.

## Parasitic Power

The absorption chiller heater associated hot water, chilled water and condenser water pumps (PP-5, PP-1, and CP-1) parasitic power will be determined by combining one-time power measurements (WCWP1, WCHPP1, WHWPP5) with continuously recorded component runtimes (SCWP1, SCHPP1, SHWPP5). The cooling tower parasitic power (WCT1) will be continuously monitored by interfacing with the cooling tower fan variable speed drives via BACnet protocol. Cooling tower CT-1 serves both the absorption chiller and electric chillers. Therefore, the parasitic power of the cooling tower fans will only be taken into account when the absorption chiller is operating alone.

| Name | Description | Eng Units | Sensor Type |
| :---: | :---: | :---: | :---: |
| WCWP1 | Absorption Chiller Condenser Pump Power | kW | Handheld Pwr Meter |
| WCHPP1 | Absorption Chiller Chilled Water Pump Power | kW | Handheld Pwr Meter |
| WHWPP5 | Absorption Chiller Hot Water Pump Power | kW | Handheld Pwr Meter |

Table 4. One-Time Measured Data Collected
The product data and cut sheets for the metering equipment and sensors are located in Appendix C.

## Data Collection and Retention System

The PureComfort® RMS gateway system and the absorption chiller controls will be integrated with a Carrier i-Vu Pro control system. The i-Vu Pro control system using a dedicated server will view and record all PureComfort ${ }^{\circledR}$ system data point readings from both the PureComfort ${ }^{\circledR}$ RMS gateway and the absorption chiller controls via Modbus communication. Data will be recorded continuously every 5 minutes from the i-Vu Pro system. The i-Vu Pro system will also be integrated with the customer's building management system for viewing and recording data as needed. The i-Vu system will have a dedicated broadband connection (static IP) which allows the data to be accessible to Carrier and NYSERDA as well as the customer for data acquisition and the capability for real time system readings. Both the i-Vu Pro and the PureComfort® RMS gateway systems are located in the mechanical room penthouse. The product data for the i-Vu Pro control system and the PureComfort ${ }^{\circledR}$ control signals diagram E602 are located in Appendix D.

If a power outage occurs the i-Vu pro control system and the PureComfort $\circledR^{\text {R RMS gateway are both }}$ on emergency power to prevent the loss of data as well as communication. Data will be inspected for loss of data and data abnormalities due to the malfunction of equipment, disturbances, and changed initial conditions

## Golub Corporation Headquarters Office Building

## Measurement \&Verification Plan

## Calculations

## Electric Power Output

The net power output of the microturbine will be calculated using the power reading from the Microturbine (WT) minus the parasitic load power (WP) outputs (including the cooling tower only when the absorber is operating alone).

$$
\text { wT }=\mathrm{wt} \_ \text {kw- wp } \quad W T N=W T-W P
$$

Where

$$
\mathrm{WP}=\mathrm{WCTC} 1+\mathrm{WCTC} 2+\mathrm{WCWP} 1+\mathrm{WCHPP} 1+\mathrm{WHWPP} 5
$$

WCTC1 and WCTC2 $=$ power outputs of the cooling tower fans
$\begin{array}{ll}\text { WCWP1 } & =\text { power output of condenser water pump for absorber } \\ \text { WCHPP1 }\end{array}$
WCHPP1 $\quad=$ power output of chilled water pump for absorber heat recovery
WHWPP5 $=$ power output of hot water pump for absorber hear recovery

## Thermal Outputs

The total useful thermal output of the heat recovery system is calculated by summing the thermal outputs of cooling and the heating produced by the absorption chiller using temperature sensors and flow readings.

$$
\mathrm{Q}_{\text {Total }} \quad=\mathrm{QC}+\mathrm{QH}
$$

$\mathrm{QC}=\mathrm{kx}[\mathrm{FCH} \times(\mathrm{TCHL}-\mathrm{TCHE})]$
Where k is equal to $500 \mathrm{Btu} / \mathrm{hr}-\mathrm{gpm}-{ }^{\circ} \mathrm{F}$ for water $44^{\circ} \mathrm{F}$

$$
\mathrm{QH}=\mathrm{kx}[\mathrm{FHW} \times(\mathrm{THWL}-\mathrm{THWE})]
$$

Where k is equal to $487 \mathrm{Btu} / \mathrm{hr}-\mathrm{gpm}-{ }^{\circ} \mathrm{F}$ for water at $175^{\circ} \mathrm{F}$

## Golub Corporation Headquarters Office Building <br> Measurement \&Verification Plan

The combined electrical thermal net efficiency is calculated

$$
\eta \mathrm{CHP}=\frac{\mathrm{WT}(\mathrm{~kW})+\mathrm{PQ}_{\text {Total }}(\mathrm{kW})}{\mathrm{P}_{\text {Fuel Input }}(\mathrm{kW})} \times 100
$$

Where

$$
\begin{aligned}
& \mathrm{PQ}_{\text {Total }}(\mathrm{kW})=\frac{\mathrm{Q}_{\text {Total }}(\mathrm{MBtu} / \mathrm{hr})}{3.412 \frac{M B t u}{k W h}} \\
& \mathrm{P}_{\text {Fuel Input }}(\mathrm{kW})=\text { FGT }\left(\frac{F t 3}{\min }\right) \times\left(\frac{60 \text { min }}{\text { hour }}\right) \times \text { Fuel LHV }\left(\frac{B t u}{F t 3}\right) \times \frac{k W h}{3412 B t u} \\
& \mathrm{LHV}=.930 \mathrm{MBtu} / \mathrm{Ft}^{3} \text { Natural Gas }
\end{aligned}
$$

The logging interval will be every 15 minutes. Real time, daily, monthly, and annual values can be calculated using the above equations by summing the monitored values over the number of desired time intervals.

For example:

$$
\mathrm{QH}=\mathrm{k} \times \sum[\mathrm{FHW} \times(\mathrm{THWL}-\mathrm{THWE})] \times \text { time interval }(15 \mathrm{~min}=.25 \mathrm{hr})
$$


[^0]:    Figure 1. Microturbines during installation

