MONITORING PLAN FOR THE PURECELL 200 FUEL CELL AT PRICE CHOPPER IN GLENVILLE, NY

Draft

July 5, 2011

Submitted to:

United Technologies Power 195 Governor's Hwy South Windsor, CT 06074

Submitted by:

CDH Energy Corp. PO Box 641 2695 Bingley Rd. Cazenovia, NY 13035 (315) 655-1063

TABLE OF CONTENTS

Introduction	1
System Description	1
Heat Recovery Monitoring System	1
Calculated Quantities	5
Project Web Site	7

Appendix A – Monitoring System Details

Introduction

This plan describes our approach to monitoring the performance of the fuel cell systems installed at the Price Chopper supermarket in Glenville, NY. The UTC Power PureCellTM Model 200 fuel cell provides clean and efficient electric power and thermal output to the facility. This fuel cell is expected to supply electricity in addition to standby power in the event of a power grid failure. The facility will also recover heat from the fuel cells to use for space and Domestic Hot Water (DHW) heating.

System Description

The PureCell® Model 200 unit is installed behind the facility. The fuel cell (FC) has separate electrical feeds for parallel operation with the utility or to provide backup power when isolated from the grid. The fuel cell is able to provide 200 kW of electrical power and up to 900,000 Btu/h of heat. If fully utilized, the fuel cell can obtain a thermal efficiency near 90%.

Power Output: 200 kW 480V, 3ph

Figure 1. PureCell 200 Unit

Most of the thermal output from the FC is used to provide space conditioning and water heating for the facility. The low temperature hot water loop supplies 130°F water to meet space heating loads including hot water coils and radiant floor heating circuits (see Figure 2).

Heat Recovery Monitoring System

The heat recovery monitoring system (HRM) has been designed to capture the electrical and thermal performance of the system. Table 1 summarizes the measurements that will be captured at the site.

Figure 2 shows where the measurements will be made in the thermal loops. Figure 3 and Figure 4 show the locations for the temperature measurements and flow meters in thermal circuits. Flow and temperature sensors are installed for two thermal loops: low temperature and cooling water.

Data are extracted from the Shark Power Meter via MODBUS RTU. The Obvius AcquiSuite datalogger logs the required data.

Channel /				Signal /			
Source	Data Pt	Description	Instrument / Meter	Register	Eng Units	Wire	Notes
Main-1	FG	Instantaneous Fuel Flow	Roots Series B3 Gas Meter	Pulse	lb/h		Temperature Compensated
Main-2	FL	Low Temp Water Flow	Onicon Flow Meter	4-20 mA	gpm	6	2" Type L Copper
Main-3	FCW	Cooling Water Flow	Onicon Flow Meter	4-20 mA	gpm	5	2" Type L Copper
Main-4	TLS	Low Temp Supply Temp (from FC)	10k Thermistor, Type 2	ohm	۴F	3	
Main-5	TLR	Low Temp Return Temp (to FC)	10k Thermistor, Type 2	ohm	۴F	4	
Main-6	TCWS	Cooling Water Supply Temp (from FC)	10k Thermistor, Type 2	ohm	۴F	1	
Main-7	TCWR	Cooling Water Return Temp (to FC)	10k Thermistor, Type 2	ohm	۴F	2	
Modbus Dev 1	WREC_pos	Energy Imported (RECs meter)	Shark 100	Double	kWh	RS-485	
Modbus Dev 1	WREC_neg	Energy Produced (RECs meter)	Shark 100	Double	-kWh	RS-485	
Modbus Dev 1	WDREC	Power through RECs meter	Shark 100	Float	Watts	RS-485	

Table 1. Summary of Measured and Collected Data at the Site

Note: Main = Obvius main board, device 250

Figure 2. Schematic of Heat Transfer Loops in Fuel Cell System

Figure 3. Locations of Low Grade Loop Temperature and Flow Sensors in Rear of the Facility

Figure 4. Locations of Cooling Module Loop Temperature and Flow Sensors in Rear of the Facility

The monitoring system is based around the Obvius AcquiSuite data logger. The layout of the HRM and the connections with other network components of the Fuel Cell system are shown in Figure 5.

Figure 5. Layout of HRM Network

Calculated Quantities

Heat Recovery Rates

The data to determine the delivered heat recovery energy and the delivered cooling will be collected by the datalogger at each scan interval and then averaged for each 15-minute recording interval. The calculations listed below will be completed before the data are displayed on the web site:

$$Q_{lo} = \frac{1}{n} \sum_{i=1}^{n} k_{lo} \cdot FL_i \cdot (TLS_i - TLR_i)$$

$$Q_{cw} = \frac{1}{n} \sum_{i=1}^{n} k_{cw} \cdot FCW_i \cdot (TCWS_i - TCWR_i)$$

where:	Q_{xx}	-	Delivered heat recovery for loop xx (Btu/h)
			(xx :: lo = low temp, cw = cooling water)
	k_{xx}	-	density specific heat product constant for fluid in loop xx
	i	-	<i>i</i> th scan (or read)
	п	-	number of scans in the averaging period

The loop fluid is expected to be water with ethylene glycol (e.g., DowFrost). The factor k is equal to:

Low Temp Loop: $k_{lo} = 456.6 \text{ Btu/h} \cdot \text{gpm} \cdot ^{\circ}\text{F}$ for 40% glycol at 130°F Cooling Water: $k_{cw} = 459.3 \text{ Btu/h} \cdot \text{gpm} \cdot ^{\circ}\text{F}$ for 40% glycol at 180°F

The Useful and and Unused heat recoveries will be:

$$Q_{useful} = Q_{lo}$$

 $Q_{unused} = Q_{cw}$

Power and Energy

Generally power meters can provide a host of data points, many of them redundant. Our approach, where possible, is to grab the register value associated with energy (kWh) and from that value determine the average power for each 15-minute interval. This average power value is defined as:

$$kW_{avg} = \frac{kWh}{\Delta t}$$

This average Power over a short time interval (15 minutes) is usually indistinguishable from the "demand" or instantaneous power data reported by most meters (most utilities use a sliding 15-minute interval). The fuel cell PPC is given as instantaneous kW. Cumulative reads are in kWh.

Efficiency Calculations

The electrical and total efficiency of the Fuel Cell, based on the lower heating value of the fuel, will be calculated using:

$$\eta_{electrical} = \frac{WFC}{LHV \times FG \times \frac{1}{3600}}$$
$$\eta_{total} = \frac{WFC + QL \times \frac{1}{3412.8}}{LHV \times FG \times \frac{1}{3600}}$$

where:

Greenhouse Gas Calculations

To determine the reductions in greenhouse gas emissions for the fuel cell system, we need to measure or estimate the emissions from the fuel cell itself and then also estimate the emissions that would have occurred without the fuel cell meeting these loads. The displaced emissions include the CO_2 <u>not</u> emitted at the utility power plant because of lower electrical consumption and the CO_2 <u>not</u> emitted by an on-site furnace or boiler to meet the thermal output. Table 2 lists the emissions factors we will use for the displaced emissions.

Table 2. Displaced Emissions Factors

	Natural Gas	Electricity from Pov	ver Plant
CO ₂ emissions	12.06 lb per CCF	1.28 lb per kWh	Massachusetts
		0.98 lb per kWh	Connecticut
		0.86 lb per kWh	New York
NOx emissions	0.1 lb per CCF	2.45 lb per MWh	Massachusetts
		2.45 lb per MWh	Connecticut
		2.45 lb per MWh	New York

Notes: CCF ~ 100 MBtu

 CO_2 data from EIA state-by-state summary, 1998-2000. NOx data based on NY State.

The equations to calculate actual and displaced emissions are listed below:

Displaced emissions = $(kWh \text{ produced}) \times (lb/kWh) + (\underline{thermal output, MBtu}) \times (lb/CCF) / 100 \\ 0.80$

Actual emissions = (Natural gas input, therms) \times (lb/CCF)

Reduced Emissions = (Displaced emissions, lbs) – (Actual Emissions, lbs)

Project Web Site

CDH will create a web site for Price Chopper that provides access to all the historic data collected at the site. The website will provide custom, detailed plots and tables of the collected data from the site that will be updated once a day.

Appendix A - Fuel Cell HRM at Price Chopper, Glenville

Internet address: 166.141.147.129

Table 3. Summary of Major HRM Components

Obvius	This datalogger includes thermistors and flow meters to measure thermal
AcquiSuite	loads. All data are stored in the AcquiSuite memory and transferred to the
A8812	CDH Energy servers from this device. The AcquiSuite can also create a file
	every few minutes that is used to generate the real-time screen.

Figure 6. Layout of HRM Network

The AcquiSuite performs all communications with devices on the network. It reads data from the temperature and flow sensors and from the Shark power meter, and then logs all the data.

 Table 4. Network Devices and Addresses

Network Layout	etwork Lay	out
----------------	------------	-----

				MODBUS	MODBUS
			IP Address	RTU	RTU
Label	Device	Protocol		Mode	Address
AcquiQuito		Modbus TCP	192.168.0.220		
Acquisuite		Modbus RTU		Master	
Shark	Shark 100 - REC Power Transducer	Modbus RTU		Slave	1

		UTC / Obvius		Native					
Source	CDH Name	Variable Name	Description	Units	Sourc	e Data	Wire	Notes	
Main-1	FG	FG Ave	Fuel flow rate	lb/h	Pu	Ilse		Roots Gas Meter	
Main-2	FL	FL Ave	Flow rate – low grade heat	gpm	4-20 m	A (0-??)	6	Onicon Meter	
Main-3	FCW	FCW Ave	Flow rate – cooling water	gpm	4-20 m	A (0-85)	5	Onicon Meter	
Main-4	TLS	TLS Ave	Temperature – low grade heat supply	°F	oł	nm	3	10k, Type 2	
Main-5	TLR	TLR Ave	Temperature – low grade heat return	°F	oł	nm	4	10k, Type 2	
Main-6	TCWS	TCWS Ave	Temperature – cooling water supply	°F	oł	nm	1	10k, Type 2	
Main-7	TCWR	TCWR Ave	Temperature – cooling water return	°F	oł	nm	2	10k, Type 2	
					Address	Туре			
SHARK	WREC_pos	W-hours, Received	Energy Imported (RECs meter)	kWh	1100	Double	RS-485	Modbus RTU	
SHARK	WREC_neg	W-hours, Delivered	Energy Produced (RECs meter)	-kWh	1102 Double		RS-485	Modbus RTU	
SHARK	WDREC	Watts, 3-Ph total	Power through RECs meter	Watts	900	Float	RS-485	Modbus RTU	

 Table 5. Listing of Data Points Collected from all Devices

= Data from sensors on Obvius AcquiSuite

= Data from Shark Meter via MODBUS RTU

Table 6. Sensor and Wiring Details for AcquiSuite

Channel /				Signal /			
Source	Data Pt	Description	Instrument / Meter	Register	Eng Units	Wire	Notes
Main-1	FG	Instantaneous Fuel Flow	Roots Series B3 Gas Meter	Pulse	lb/h		Temperature Compensated
Main-2	FL	Low Temp Water Flow	Onicon Flow Meter	4-20 mA	gpm	6	2" Type L Copper
Main-3	FCW	Cooling Water Flow	Onicon Flow Meter	4-20 mA	gpm	5	2" Type L Copper
Main-4	TLS	Low Temp Supply Temp (from FC)	10k Thermistor, Type 2	ohm	۴F	3	
Main-5	TLR	Low Temp Return Temp (to FC)	10k Thermistor, Type 2	ohm	۴F	4	
Main-6	TCWS	Cooling Water Supply Temp (from FC)	10k Thermistor, Type 2	ohm	۴F	1	
Main-7	TCWR	Cooling Water Return Temp (to FC)	10k Thermistor, Type 2	ohm	۴F	2	
		•		-			-
Modbus Dev 1	WREC_pos	Energy Imported (RECs meter)	Shark 100	Double	kWh	RS-485	
Modbus Dev 1	WREC_neg	Energy Produced (RECs meter)	Shark 100	Double	-kWh	RS-485	
Modbus Dev 1	WDRFC	Power through RECs meter	Shark 100	Float	Watts	RS-485	

Table 7. Forwarded Addresses on Digi Modem

Enable	Protocol	External Port	Forward To Internal IP Address	Forward To Internal Port
	UDP	47808	192.168.0.51	47808
	TCP	3389	192.168.0.199	3389
	TCP	8081	192.168.0.220	80
	TCP	8082	192.168.0.221	80
	FTP	8083	192.168.0.220	21
	TCP	8084	192.168.0.220	23
	FTP 💌	0	0.0.0.0	0

Forward TCP/UDP/FTP connections from external networks to the following internal devices:

Obvius AcquiSuite

The AcquiSuite data logger produces a separate file of 15-minute data for each device. The read map for the data logger is given below.

Device 001 (SHARK Meter):	Column
WREC_pos WREC neg	16
WDREC.	9

Device 250 (AcquiSuite Main Board):

FG.		•	•	•		•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•			.1
FL.		•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 6
FCW		•			•	•	•		•	•	•	•		•			•	•		•	•		•	•	•	• 1	1
TLS		•			•	•	•		•	•	•	•		•			•	•		•	•		•	•	•	• 1	L 6
TLR		•			•	•	•		•	•	•	•		•			•	•		•	•		•	•	•	• 2	21
TCW	s.	•			•	•	•		•	•	•	•		•			•	•		•	•		•	•	•	• 2	26
TCW	R.					•								•				•			•		•	•		. 3	31

Sensor Calibrations:

Thermistor #	Name	Wire	Input Channel	Offset
4-26	TLS	3	Main-4	-2.1
4-25	TLR	4	Main-5	-1.7
4-24	TCWS	1	Main-6	-1.3
4-23	TCWR	2	Main-7	-1.2