MEASUREMENT AND VERIFICATION PLAN

FOR

DG/CHP System AT Parker Jewish Hospital – All Systems Cogen

Revised July 19, 2012

Submitted to:

New York State Energy Research and Development Authority 17 Columbia Circle Albany, NY 12203-6399

Submitted by:

CDH Energy Corp. PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 (315) 655-1063 www.cdhenergy.com

Project Team:

NYSERDA Project Manager:

Jim Hastings 518-862-1090 ext.3492

Developer/Applicant:

All Systems Cogeneration, Inc. 1595 Ocean Ave, Suite A12 Bohemia, NY 11716 Tel 631-750-6060 Fax 631-750-6063 all-systems@att.net

NYSERDA QC Contractor:

John Defrees Modern Energy Technologies (as sub-contractor to CDH Energy) 2830 Tuscaora Road Erieville, NY 13061 Tel (315) 662-3243 john@modernenergyllc.com

NYSERDA M&V Contractor:

Adam Walburger, CDH Energy PO Box 641 2695 Bingley Rd Cazenovia, NY 13035 315-655-1063

1. Introduction

All Systems Cogen has installed a combined heat and power (CHP) system at the Parker Jewish Hospital facility in New Hide Park, NY. The CHP system based on four natural gas fueled reciprocating engine-generators having a combined electrical rating of 300 kW. The site's electric demand is sufficient to keep the system operating at or near its rated capacity on a continuous basis. Heat would be recovered as hot water from the engine jacket at a supply temperature of 205°F. A heat exchanger will separate the engine coolant from the DHW load side equipment. Additionally, exhaust heat exchangers are used at each engine to provide additional heating to boiler jacket water. Boiler water is pulled from the lower boiler jacket, mixed with makeup water, and circulated through the four engine exhaust HX and re-injected at a higher point in the boiler jacket. Excess heat is rejected from the DHW hot water loop to a dump radiator.

Peak operation of the CHP system will result in the following performance:

Gross electrical output:	300 kW
Parasitic electrical input (estimated):	-15 kW
Jacket water at 195°F:	1.34 MMBtu/h
Exhaust boiler water at 205°F:	0.70 MMBtu/h
Fuel input:	3.34 MMBtu/h LHV

Annually the system is anticipated to displace 2,250,266 kWh and displace 150,362 therms of gas through heat recovery. Annual fuel consumption is 283,833 therms.

2. Instrumentation

In order to quantify the performance of the proposed CHP system, the CHP system fuel input, net electrical output, and useful thermal output must be measured. To capture these energy flows, an instrumentation plan was developed by CDH Energy and presented to the applicant, All Systems Cogen. The instrumentation plan covers the location and type of sensors necessary to provide the appropriate measurements of the energy flows of the system.

In accordance to the instrumentation plan, All Systems Cogen will supply the instrumentation listed Table 1 below for use in meeting the NYSERDA CHP program monitoring requirements.

			- 8 -			
Point	Instrument	Output Type	Sensor Location	Data Point	Notes	
Facility Power	None	Monthly utility billing	n/a	wт		
Generator Power Output	WattNode WNB-3Y-208-P 1200 A Cts	Pulse output 25 Wh/pulse	CTs in Panel DP-CHP on collector bus	WG	Meter location is net power output	
System Parasitic (Combined)	WattNode WNB-3Y-208-P 200 A Cts	Pulse output 5 Wh/pulse	CTs in disconnect for parasitic load panel	WPAR		
Generator Gas Input	Utility pulse meter	Pulse output Pulse constant TBD by utility	At gas service entrance	FG	Meter and rate selection subject to National Grid discretion	
DHW heat recovery loop flow rate	Onicon F-1110 insertion turbine meter	4-20 mA output 0 – 150 GPM	On DHW heat recovery loop piping, downstream of dump radiator (lowest temperature point on system piping)	FL1		
DHW heat recovery loop temperatures	Veris TIGB1-D0 10K Type II Thermistor	Resistance	In thermowells installed on heat recovery loop piping	TLS1, TLR1, TLR2	TLR2 surface mount sensor	
Boiler water heat recovery loop flow rate	Nice Instruments Titan Insertion Shedding Vortex Meter Titan IV – 1.5-2 L R10 24 LT TX	4-20 mA output 8 - 190.4 GPM	On boiler heat recovery loop piping, upstream of boiler	FL2		
Boiler water heat recovery loop temperatures	Veris TIGB1-D0 10K Type II Thermistor	Resistance	In thermowells installed on heat recovery loop piping	TLS2, TLR3		

 Table 1. Instrumentation Supplied By All Systems Cogen

Data Logger

Readings for the installed instrumentation are recorded by an Obvius AcquiSuite data logger provided and installed by CDH Energy. The data logger samples all sensors approximately once per second and record one-minute totals (of pulse or digital sensors) or averages (of analog sensors). The one minute readings of heat recovery temperatures and flows will be used to provide an accurate calculation of heat transfer on the heat recovery loops, which are all continuous flow loops.

Based on the number of monitored data points (10), the logger will have sufficient memory to store 30-days of data if communications with the logger are interrupted. The data will be downloaded from the data loggeronce per day via a cellular modem provided by CDH Energy. The data will be loaded into a database, checked for validity, and posted on the NYSERDA web site.

Onsite Installation

CDH Energy installed a datalogger panel at a location in the cogeneration room agreeable to the site and developer. The monitoring system panel is approximately 2 ft x 2 ft x 1 ft. The panel is mounted near a 120 VAC power receptacle (it requires 1 amp or less). The panel is conveniently located relative to the sensors listed above as well as the communications line provided by the site.

Communications

Parker Jewish has provided an network connection for the logger. The logger is located on a VLAN at the hospital with the following parameters:

- Network 192.168.16.0
- Subnet 255.255.255.0
- Default Gateway 192.168.16.254
- DNS servers 172.16.3.41 and 172.16.3.42

The data logger IP address is 192.168.16.10, and when accessing the data logger on site, the PC address must be set to 192.168.16.11. Outside access to the internet from the PC is possible using the following proxy server:

• 172.16.3.46, port 8080

However, the connection will not allow transmission out to the public internet. CDH Energy has provided a cellular modem for the data logger. The data logger uploads data nightly to the CDH Energy servers (data.cdhenergy.com).

On Site Support

The site will be responsible for providing access to all areas necessary to complete the monitoring installation, as well as any return trips for verification of sensors or service to the monitoring system.

3. Data Analysis

The collected data will be used to determine the net power output of the system as well as the fuel conversion efficiency (FCE).

No.	Data Point	Description	Engineering Unit
1	WG	Generator Electrical Output (Combined)	kW/kWh
2	WPAR	Parasitic Load Electrical Consumption	kW/kWh
3	FG	Combined Generator Fuel Input	CF
4	FL1	Glycol DHW Loop Flow Rate	GPM
5	TLS1	Glycol DHW Loop Supply Temperature	deg F
6	TLR1	Glycol DHW Loop Return Temperature from HX loads, upstream of dump radiator	deg F
7	TLR2	Glycol DHW Loop Return Temperature downstream of dump radiator	deg F
8	FL2	Boiler Water Loop Total Flow Rate	GPM
9	TLS2	Boiler Water Loop Supply Temperature	deg F
10	TLR3	Boiler Water Loop Return Temperature from Boilers, downstream of makeup water connection	deg F

 Table 2. Summary of Monitored Data Points

Peak Demand or Peak kW

The peak electric output or demand for each power reading will be taken as the average kW in a fixed 15-minute interval (0:00, 0:15, 0:30, etc), or

kW =
$$\sum_{15 \text{min}} \frac{\text{kWh}}{\Delta t} = \sum_{15 \text{min}} \frac{\text{kWh per interval}}{0.25 \text{ h}}$$

Heat Recovery Rates

The heat recovery rates will be calculated offline based on the 1-minute data collected. The piping arrangement at this site allows for multiple heat rates to be determined with 3 temperature sensors and one flow reading on the DHW heat recovery loop:

Useful DHW heat recovery (QUD)	=	$K \cdot \Sigma [FL1 \cdot (TLS1 - TLR1)] / n$
Rejected (unused) heat recovery (QR)	=	K ·Σ [FL1·(TLR1-TLR2)] / n

The loop fluid is expected to be a glycol-water mixture. The factor K will be determined based on a periodic reading of the fluid properties with a refractometer to determine the glycol concentration. (K ~ 500 Btu/h-gpm-°F for pure water; ~480 for 20% glycol). 'n' is the number of scan intervals included in each recording interval (e.g., with 1 sec scans and 1-minute data, n=60)

For the boiler heat recovery loop, the temperature rise of the boiler jacket water and corresponding flow rate are used to calculate the heat recovery:

Useful boiler loop heat recovery (**QUB**) = $K \cdot \Sigma [FL2 \cdot (TLS2 - TLR3)] / n$

The factor K for the boiler water is expected to be 500 Btu/h-gpm-°F (pure water). Note that the possibility of mixed phase (liquid/gas) flow in the boiler water loop is high. The boiler water (which is at saturation) has the potential to flash to vapor in the circulating pump suction leg. Measuring the heat transfer that occurs in the boiler water loop based solely on temperature change and flow, may not fully account for the entirety of heat transfer that occurs, especially with regard to the potential in phase change. Also, accurate measurement of mixed phase flow is difficult due to the constantly changing density of the fluid. Due to these issues, and other unforeseen complications, a full accounting of the heat transfer on the boiler loop may not be possible, and the final FCE determined by the measurements may be understated.

Calculated Quantities

The net power output from the CHP system will be defined as the gross power from the engines minus the parasitic power. Note that for this particular site, WG represents the <u>net</u> power output from the engines, and therefore can be directly used directly to calculate the fuel conversion efficiency (FCE), without involving the parasitic energy in the computation.

The fuel conversion efficiency of the CHP system, based on the lower heating value of the fuel, will be defined as:

$$FCE = \frac{QU + 3,413 \cdot (WG)}{0.9 \cdot HHV_{acc} \cdot FG}$$

Where:

QU	=	Useful heat recovery (Btu) (QUD+QUB)
WG	=	Engine generator net output (kWh)
FG	=	Generator gas consumption (Std CF)
HHVg	_{gas} =	Higher heating value for natural gas (~1030 Btu per CF).
	-	Where 0.9 is the conversion factor between HHV and LHV

The FCE can be calculated for any time interval. When converting to daily, monthly, or annual values, the each value is summed and then the formula is applied:

$$FCE = \frac{\sum_{k=1}^{N} QU + 3,413 \cdot \sum_{k=1}^{N} (WG)}{0.9 \cdot HHV_{gas} \cdot \sum_{k=1}^{N} FG}$$

Where N is equal to the number of intervals in the period of interest.

The parasitic power for the entire CHP system is measured at WPAR. The parasitic power is being recorded for consistency with other NYSERDA CHP monitored sites, but will not used directly in determining compliance with either the kWspc, kWp, or annual FCE of the project.

Appendix A

System Schematic and Cut Sheets for Key Sensors and Instruments

Parker Jewish CHP M&V instrumentation Plan - As Built 2012May02

No.	Data Point	Description	Units	Sensor	Signal Type	Multiplier/Pulse Rate?	Note
1	WG	Generator Electrical Output (Combined)	kW/kWh	WattNode WNB-3Y-208-P 1200 A Cts	Pulse	0.025 kWh/pulse	CTs face generator(s), measures net generator power
2	WPAR	Parasitic Load Electrical Consumption	kW/kWh	WattNode WNB-3Y-208-P 200 A Cts	Pulse	0.005 kWh/pulse	CTs face utility
3	FG	Combined Generator Fuel Input	CF	Utility Pulser	Pulse	1000 CF/pulse (typ)	To be installed as of 2012May02
4	FL1	Glycol DHW Loop Flow Rate	GPM	Onicon F-1110	4-20 mA	0-150 GPM	1-inch full port ball valve assembly used.
5	TLS1	Glycol DHW Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	CDH Energy supplied thermowell, 4-inch well/probe
6	TLR1	Glycol DHW Loop Return Temperature from HX loads, upstream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	CDH Energy supplied thermowell, 4-inch well/probe
7	TLR2	Glycol DHW Loop Return Temperature down stream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	CDH Energy supplied strap on sensor, mounted below insulation.
8	FL2	Boiler Water Loop Total Flow Rate	GPM	Shedding Vortex HW meter	4-20 mA	8.375 - 190.4 GPM	Shedding vortex meter recommended due to possibility of mixed phase flow. 1-inch full port ball valve assembly used.
9	TLS2	Boiler Water Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	CDH Energy supplied thermowell, 4-inch well/probe
10	TLR3	Boiler Water Loop Return Temperature from Boilers, down stream of makeup water connection	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	CDH Energy supplied thermowell, 4-inch well/probe
11	WT	Total Facility Energy / Power	kW/kWh	n/a	n/a	n/a	Can be obtained on a monthly basis from ConEd Bills
12	TAO	Ambient Temperature	deg F	n/a	n/a	n/a	Can be obtained from Internet NCDC website

Est Price	Supplied by
	Applicant
	Applicant
	Applicant
	Applicant
	CDH Energy
	CDH Energy
	CDH Energy
	Applicant
	CDH Energy
	CDH Energy
	Applicant
	Applicant / NCDC

Note:

Burkert flow meters shown in drawings used for balancing, not used in monitoring. All HX Flow/Temperature difference sensors removed.

CHP Efficiency Calculations:

Net Power WG_{net} = WG

Useful Heat QHU = 480 x FL1 x (TLS1 - TLR1) + 500 x FL2 x (TLS2-TLR3

Dumped Heat QHD = 480 x FL1 x (TLR1 - TLR2)

Fuel Conversion $FCE = \frac{QHU \cdot \Delta t + 3.412 \cdot (WGnet \)}{LHV_{gas} \cdot FG}$

EQUIPMENT SCHEDULE FOR PARKER JEWISH

ITEM ORDER	ED/DELIVER	RED DESCRIPTION	MANUFACT.	PART NO.	FUNCTION	BY
CG1,CG2,CG3,CG4	YES/NO	COGEN	ASC	75 KW	COGENERATION MODULE	ASC
FC-1	YES/NO	FAN	COLMAC	AFV-45162-11	COOLING RADIATOR	ASC
P1, P2	YES/YES	PUMP	TACO	KV1509-5HP	COGEN MAIN AND SPARE PU	MP ASC
P3, P4	YES/YES	PUMP	TACO	1641 B-3HP	DHW MAIN AND SPARE PUM	IP ASC
P5, P6	YES/YES	PUMP	TACO	KV1509-3HP	EXHAUST MAIN AND SPARE PU	JMP ASC
HX1	YES/YES	HEAT EXCHANGER	FLATEPLATE	LC110-80DW	DOM. HOT WATER EXCHANCE	GER ASC
FM1,2,3,4	YES/YES	FLOW METER (1-1/2")	BURKERT	423990	FLOW METER (1-1/2")	ASC
FM5	YES/YES	FLOW METER (2-1/2")	BURKERT	8025	FLOW METER (2-1/2")	ASC
FM6	YES/YES	FLOW METER (2")	BURKERT	423991	FLOW METER (2")	ASC
FM7,8,9,10	YES/NO	FLOW METER (1")	BURKERT	449735	FLOW METER (1") HI TEMP	ASC
FM11	YES/YES	FLOW METER (1-1/2")	BURKERT	449737	FLOW METER (1-1/2") HI TEM	IP ASC
GFS-1	YES/NO	FILL STATION	AXIOM	SF 100HP	GLYCOL FILL STATION	ASC
E1, E2	NO/NO	3 WAY VALVES	GRAINGER	1AWB8	110/140 DHW CONTROL	ASC
M1	YES/NO 1	THERMOSTATIC VALV	E AMOT	1-1/2BOCT1700	01 FAN MIXING VALVE	ASC
TANK 1&2	YES/YES	STORAGE TANKS	AO SMITH	750 GAL.	DOMESTIC HOT WATER STORA	AGE ASC
W1-W6	NO/NO	THERMISTOR WELLS	TECOGEN	72075	TEMPERATURE SENSOR	ASC
AS-1	N/A	AIR SEPERATOR	TACO	AC3	AIR SEPERATOR	MECH. CONTRACTOR
ET-1	N/A	EXP. TANK	TACO	PAX-170	EXPANSION TANK	MECH. CONTRACTOR
AS1 ,AS2,AS3,AS4	N/A	AQUASTAT	HONEYWELL	L6006A	PUMP CONTROL	MECH. CONTRACTOR
Р	N/A	PRESSURE GAUGE	MCMASTER	4053K15	PRESSURE GAUGE	MECH. CONTRACTOR
	N/A	1/4" COUPLING	MCMASTER	4429K111	PIPE COUPLING	MECH. CONTRACTOR
	N/A	SIPHON TUBE	MCMASTER	4031K65	SIPHON TUBE	MECH. CONTRACTOR
	N/A	1/4' PETCOCK	MCMASTER	4912K72	SHUT OFF VALVE	MECH. CONTRACTOR
Т	N/A	TEMPERATURE GAUG	EMCMASTER	3946K14	TEMPERATURE GAUGE	MECH. CONTRACTOR
	N/A	TEMP. GAUGE WELL	MCMASTER	3957K64	TEMP. GAUGE WELL	MECH. CONTRACTOR

AcquiSuite Data Acquisition Server

ACQUISUITE A8812-1 AND A8812-GSM

Obvius' AcquiSuite is an intelligent, flexible data acquisition server allowing users to collect energy data from meters and environmental sensors. Designed to connect to IP-based applications such as enterprise energy management, demand response and smart grid programs, the AcquiSuite server lets you connect thousands of energy points, benchmark energy usage and reduce energy costs.

DATA COLLECTION

The AcquiSuite collects and logs data from connected (wired or wireless) devices based on user selected intervals. Data from downstream devices are time stamped and stored in non-volatile memory. This interval data is stored locally until the next scheduled upload or manual download. Using an integrated modem or Ethernet (LAN) connection you can push or pull data via HTTP, XML, FTP or any custom protocol utilizing our AcquiSuite Module to build your own application, including integrated cellular communication options.

INSTALLATION & FEATURES

No software is required. Easily access information through ANY web browser. The AcquiSuite has eight integrated flex I/O inputs. Each field selectable input can measure resistive, analog (4/20mA / 0-10V) and standard pulse / KYZ pulse output devices. This simplifies installation for basic projects monitoring electric, gas or water meters. There are several additional features including alarming, SNMP Traps, network configuration, wireless diagnostics, security provisions, alarm relays and backlit LCD. Our integrated meter driver library is designed to speed up installation and lower integration costs through "plug-and-play" connectivity. Ask about our free commissioning software, Obvius Configuration Console (OCC).

COMPATIBILITY

The AcquiSuite is compatible with nearly any front-end software platform allowing customers to use a variety of reporting tools; whether it's a local server or an enterprise wide reporting suite. Obvius offers a free utility for automated .CSV file downloads or an affordable hosted solution for \$195.00 annually (unlimited data storage).

PARTNERS

Obvius' outstanding integration and software partners supplement our products and services to ensure you receive the very best energy monitoring solution.

APPLICATIONS

- Utility submetering (electricity, gas, water, etc.)
- Measurement and verification (M&V)
- Reduce energy costs
- Access energy information from local or remote sites
- Benchmark building energy usage
- View "real time" performance data
- Track energy use and peak demand for Demand Response programs

- Monitor performance of critical systems (lighting, HVAC, PDUs, inverters, etc.)
- Alarm notification for data points above or below target levels (including SNMP Traps)
- Monitor renewable energy performance and production
- Create load profiles for energy purchases
- Push or pull meter data to energy dashboards, kiosks and software applications
- LEED / Energy Star certification

ABOUT OBVIUS

Obvius manufactures data acquisition and wireless connectivity products specifically for energy management. We deliver cost-effective, reliable hardware designed to speed up installation. Our products are based on an open architecture allowing our customers to collect and log energy information from virtually any meter or sensor. The ability to support multiple communication options provides remote access to all your energy information. Founded in 2003, Obvius is located in Hillsboro, Oregon. We serve a global clientele and continue to drive innovation by simplifying data collection.

SOLUTIONS

- Data Acquisition
- Wireless Communication
- Meters & Sensors
- Custom Packaged Solutions
- Integration & Software Partners

HEADQUARTERS

Hillsboro, Oregon

CONTACT US sales@obvius.com

AcquiSuite A8812

Obvius helps customers collect and distribute energy information. Users can begin with one best-of-breed solution that solves a specific pain point, or incorporate several products and services that help reduce energy costs.

Specifications				
Processor	ARM9 embedded CPU, ARM7 IO co-processor			
Operating System	Linux 2.6			
Memory	32 MB RAM			
Flash ROM	16 MB NOR Flash (expandable with USB memory device)			
Interval Recording	1 to 60 minutes, user selectable			
LEDs	8x input, 4 modem activity, Modbus TX/RX, power, system, IO status			
Console	2 x 16 LCD character, two push buttons			
Power				
North America	110-120VAC, 60Hz, primary			
CE/Europe	100-240VAC, 50-60Hz, primary (interchangeable plug adapters optional)			
Power Supply	24VDC, 1A, class 2 wall brick transformer included			
Communication				
Protocols	Modbus/RTU, Modbus/TCP, TCP/IP, PPP, HTTP/HTML, FTP, NTP, XML, SNMP-Trap			
LAN	RJ45 10/100 Ethernet, full half duplex, auto polarity			
Modem	V.34 bis, 33,600 bps (A8812-1 only)			
Cellular	GSM/GPRS Cellular (A8812-GSM only)			
USB	USB expansion port			
Inputs				
Serial Port	RS-485 Modbus, supports up to 32 external devices (expandable)			
Ι/Ο	8x Flex IO inputs with user selectable modes: voltage, current, resistance, pulse and status			
Outputs				
Relays	2x, dry contact 30 VDC, 150 mA max			
Physical				
Weight	5lbs (2.3kg)			
Size	8" x 9.25" x 2.5" (203mm x 235mm x 64mm)			
Environment				
North America	0 to 50C, 0-90% RH, non-condensing			
CE/Europe	5 to 40C, 0-90% RH, non-condensing			
Codes and Standards				
FCC CFR 47 Part 15, Class A, EN 61000, EN 61326, CE				
Additional Notes				

NEMA enclosures available upon request

Manufactured in the USA

ce

Obvius 3300 NW 211th Terrace Hillsboro, OR 97124 503 601 2099 866 204 8134 (USA only) sales@obvius.com

PRODUCT DATASHEET

Flex I/O Module Analog/Digital to Modbus Converter

FLEX I/O A8332-8F2D

Our Flex I/O is a cost-effective way to collect data from meters or sensors and bring that information into a Modbus network or energy monitoring system. As a stand-alone or bundled package, the Obvius Flex I/O can be incorporated with data acquisition and wireless metering devices to provide a cost-effective energy monitoring solution.

WHY USE THE OBVIUS FLEX I/O

- Designed specifically for metering applications
- Easily add meters and sensor to a Modbus network
- 8x user selectable inputs
- 2x output relays
- 2x pulse replicator
- Non-volatile memory
- Industrial temperature range -30 to 70C
- LEDs for visual verification / status
- Din or wall mount for easy installation
- Field upgradable firmware

COMPATIBILITY

The Flex I/O is compatible with virtually any Modbus master, allowing customers the flexibility to use it in existing Modbus networks. Use with the Obvius AcquiSuite and take advantage of plug-and-play communication or us with the Obvius ModHopper for wireless communication.

PARTNERS

Obvius' outstanding integration and software partners supplement our products and services to ensure you receive the very best energy monitoring solution.

APPLICATIONS

- Converting analog, resistive and pulse inputs to Modbus
- Utility submetering (electric, gas, water, etc.)
- Cost Allocation
- Measurement and Verification
- Benchmark building energy usage
- Relay outputs for demand control
- Environmental monitoring
- Track energy use and peak demand for Demand Response
- DC current monitoring for Renewable Energy

ABOUT OBVIUS

Obvius manufactures data acquisition and wireless connectivity products specifically for energy management. We deliver cost-effective, reliable hardware designed to speed up installation. Our products are based on an open architecture allowing our customers to collect and log energy information from virtually any meter or sensor. The ability to support multiple communication options provides remote access to all your energy information. Founded in 2003, Obvius is located in Hillsboro, Oregon. We serve a global clientele and continue to drive innovation by simplifying data collection.

SOLUTIONS

- Data Acquisition
- Wireless Communication
- Meters & Sensors
- Custom Packaged Solutions
- Integration & Software Partners

HEADQUARTERS Hillsboro, Oregon

CONTACT US sales@obvius.com

Flex IO – A8332-8F2D

Obvius helps customers collect and distribute energy information. Users can begin with one best-of-breed solution that solves a specific pain point, or incorporate several products and services that help reduce energy costs.

Specifications	
Processor	ARM7, field upgradeable firmware
LEDs	8x input status LEDs (red), 2x Modbus TX/RX (yellow), 1 power/alive status (green)
Memory	Pulse count and runtime values are stored in non-volatile memory
Power	
Power Supply	24VDC, 200mA but not to exceed 8A, Required (not included)
Communication	
Protocols	Modbus/RTU
Inputs	
Voltage Mode	0-10VDC (min/max/average/instantaneous data) Accuracy: +/- 0.25% of full scale at 20C
Current Mode	4/20mA (min/max/average/instantaneous data) Accuracy +/- 0.25% of full scale at 20C
Resistance Mode	100 ohms to 100k (see installation for accuracy specification)
Pulse Mode	 Intended for use with dry contact outputs (consumption/rate/runtime/status) Standard and KYZ modes for form A and C relay outputs Input terminals supplies 5V at 5mA sense voltage to detect contact closures Maximum rate: 10Hz, minimum pulse width 50ms Adjustable contact closure threshold: 100Ω to 5kΩ, broken wire sense above 10kΩ optional
Serial Port	RS-485 two wire, 19200 or 9600 baud, 8N1
I/O	8 Flex IO inputs with user selectable modes: voltage, current, resistance, pulse and status
Isolation	Pulse outputs and RS485 port are isolated to 1500VDC; Power input, RS232 and analog/pulse inputs are non-isolated
Outputs	
Relays	2x, dry contact (opto-fet) 30 VDC, 150 mA max
Physical	
Weight	3.7oz (105g)
Size	4.13" x 3.39" x 1.18" (105mm x 86mm x 30mm)
Environment	
North America	-30 to 70C, 0-95% RH, non-condensing
Altitude	2000M max
Pollution	Degree 2
Codes and Standards	
Emissions	FCC CFR 47 Part 15, Class A, EN 61000, EN 61326
Safety	UL61010 Recognized, EN61010
Additional Notes	

NEMA enclosures available upon request.

For use with any Modbus RTU device / server

c**FL**us CE

Obvius 3300 NW 211th Terrace Hillsboro, OR 97124 503 601 2099 866 204 8134 (USA only) sales@obvius.com

Continental Control Systems

HE WATTNODE is a true RMS AC watt-hour transducer with pulse output (solid state relay closure) proportional to kWH consumed. The WATTNODE provides accurate measurement at low cost to meet your needs for sub-metering, energy management and performance contract applications.

Easy Installation saves you time and money. The WATTNODE is small enough to fit entirely within a standard electrical panel and the screw terminals unplug for easy wiring.

The Advanced Output includes separate pulse channels for positive and negative power, for net metering and PV metering. Optional models are available with one pulse output channel per measurement phase, which can be used to monitor each phase independently or to monitor three separate single-phase circuits with one WattNode.

Our Diagnostic LEDs provide a per-phase indication of power (green flashing), negative power (red flashing), and advanced diagnostics (yellow flashing) to help troubleshoot connection problems, like swapped CTs, or excessive line voltage. See the User's Guide for a full description.

The Pulse Series family measures 1, 2, or 3 phases in 2, 3 or 4 wire configurations. With voltage ratings from 120 to 600 VAC and current transformer (CT) rating from 5 to 4000 amps, there is a WATTNODE combination to meet your AC power measurement requirements.

ACCURACY of the WATTNODE is is 0.5% of reading over a wide range of power factors and harmonic content. You get true kWH measurements even with switching power supplies and variable speed drives.

Our Safe CTs, with internal burden resistors produce a voltage proportional to the load current. At rated current voltage is only 0.333 VAC. Split-core CTs quickly install on existing wiring and solid-core CTs cost less for new wiring.

WATTNODE[®]

Advanced Pulse Output AC Power Measurement

3131 Indian Road, Suite A Boulder, CO 80301 USA (888) 928-8663 Fax (303) 444-2903 sales@ccontrolsys.com

www.ccontrolsys.com

• Advanced Pulse Output Separate pulse channels for positive and negative power. Optional models are available with one pulse output channel per measurement phase.

• Small Size Can be installed in existing service panels or junction boxes.

• Uses Safe CTs

Output limited to one volt.

- Line Powered No external power supply required.
- Digital Signal Processing Accurate kWH measurement over a wide harmonic range.
- Detachable Terminal Blocks Easy to install and remove.

S P E C I F I C A T I O N S

Leasurement Configurations

Single phase: 2-wire or 3-wire Three phase: 3-wire or 4-wire

Electrical

Line Powered

Operating Voltage Range: +15%, -20% of nominal Power Line Frequency: 50/60 Hz CT Input: 0.333 VAC

Pulse Output

Optoisolated, solid state relay closures handle up to maximum 60 VDC & to 5mA

Standard: 4.00 Hz Bidirectional Output

- Optional: 0.01 Hz to 600 Hz Bidirectional Output Models
- Optional: Per-Phase Output Models 0.01 Hz to 150 Hz available

Accuracy

Normal Operation: Line voltage: 80% - 115% of nominal Power factor: 1.0 Frequency: 50- 60 Hz Ambient Temperature: 25°C Current: 5% - 100% of rated current Accuracy: ±0.5% of reading

Environmental

Operating Temperature: -30°C to +55°C (-22°F to 131°F) Operating Humidity: 5 to 90% (RH)

Mechanical

Enclosure: High impact, UL rated, ABS plastic Size: 3.3" x 5.6" x 1.5" Connectors: UL, CSA recognized, detachable, screw terminals (14AWG), 600V

Optional LCD Display

Display: Eight digits, each 0.43" high Reset: Wired remote and configurable front panel button Enclosure: Panel mount box, 2.95" x 1.52" Battery: Lithium 2/3A, replace every four years

MADE IN THE USA

(888) 928-8663

3131 Indian Road, Suite A Boulder, CO 80301 (888) 928-8663 Fax (303) 444-2903 sales@ccontrolsys.com

www.ccontrolsys.com

WATTNODE[®]

Advanced Pulse Output AC Power Measurement

WATTNODE

Model	VAC	VAC	Phases	Wires	
	Line To Neutral	Line To Line			
WNB-3Y-208-P	120	208-240	3	4	
WNB-3Y-400-P	230	400	3	4	
WNB-3Y-480-P	277	480	3	4	
WNB-3Y-600-P	347	600	3	4	
WNB-3D-240-P	120	208-240	3	3	
WNB-3D-400-P	230	400	3	3	
WNB-3D-480-P	277	480	3	3	

LCD Displays

Model	Displays	Units
LCDA-E	Energy	WH, kWH, or MWH
LCDA-P	Power	W or kW
LCDA-EP	Energy & Power	WH, kWH, or MWH & W or kW

OPENING CURRENT TRANSFORMERS (SPLIT-CORE)

Model	Inside Diameter	Rated Amps
CTS-0750	0.75"	5, 15, 30, 50, 70, 100, 150
CTS-1250	1.25"	70, 100, 150, 200, 250, 300, 400, 600
CTS-2000	2.00"	600, 800, 1000, 1200, 1500
СТВ	Bus Bar	600, 800, 1200, 2000, 3000 (custom)

TOROIDAL CURRENT TRANSFORMERS (SOLID-CORE)

Model	Inside Diameter	Rated Amps
CTT-0300	0.30"	5, 15, 30
CTT-0500	0.50"	15, 30, 50, 60
CTT-0750	0.75"	30, 50, 70, 100
CTT-1000	1.00"	50, 70, 100, 150, 200
CTT-1250	1.25"	70, 100, 150, 200, 250, 300, 400

Current Transformer Output Voltage: 0 - 0.333 VAC @ rated current

F-1110 SINGLE TURBINE • INSERTION FLOW METER ANALOG OUTPUT

CALIBRATION

meter.

Made in the USA

DESCRIPTION

ONICON insertion turbine flow meters are suitable for measuring electrically conductive water-based liquids. The F-1110 model provides non-isolated 4-20 mA and 0-10 V analog output signals that are linear with the flow rate.

APPLICATIONS

- Closed loop chilled water, hot water, condenser water & water/glycol/brine solutions for HVAC
- Process water & water mixtures
- Domestic water

GENERAL SPECIFICATIONS

ACCURACY

ACCURACI	
± 0.5% of reading at calibrated velocity	
\pm 1% of reading from 3 to 30 ft/s (10:1 range)	
\pm 2% of reading from 0.4 to 20 ft/s (50:1 range)	
SENSING METHOD	
Electronic impedance sensing	S
(non-magnetic and non-photoelectric)	
PIPE SIZE RANGE	
1¼" through 72" nominal diameter	
SUPPLY VOLTAGE	
24 ± 4 V AC/DC at 50 mA	
LIQUID TEMPERATURE RANGE	
Standard: 180° F continuous, 200° F peak	
High Temp: 280° F continuous, 300° F peak	
Meters operating above 250° F require 316 SS	
construction option	
AMBIENT TEMPERATURE RANGE	
-5° to 160° F (-20° to 70° C)	
OPERATING PRESSURE	
400 PSI maximum	
PRESSURE DROP	
Less than 1 PSI at 20 ft/s in 1½" pipe,	
decreasing in larger pipes and lower velocities	
OUTPUT SIGNALS PROVIDED	
Analog Outputs (non-isolated)	
Voltage output: 0-10 V (0-5 V available)	
Current output: 4-20 mA	
Frequency Output	
0 – 15 V peak pulse, typically less than 300 Hz	
continued on back)	

FEATURES Unmatched Price vs. Performance - Custom

Every ONICON flow meter is wet calibrated

in a flow laboratory against primary volumetric standards that are directly traceable to N.I.S.T.

A certificate of calibration accompanies every

calibrated, highly accurate instrumentation at very competitive prices.

Excellent Long-term Reliability - Patented electronic sensing is resistant to scale and particulate matter. Low mass turbines with engineered jewel bearing systems provide a mechanical system that virtually does not wear.

Industry Leading Two-year "No-fault" Warranty -Reduces start-up costs with extended coverage to include accidental installation damage (miswiring, etc.) Certain exclusions apply. See our complete warranty statement for details.

implified Hot Tap Insertion Design -

Standard on every insertion flow meter. Allows for insertion and removal by hand without system shutdown.

OPERATING RANGE FOR COMMON PIPE SIZES 0.17 TO 20 ft/s

.

±2% accuracy I	begins at 0.4 ft/s
Pipe Size (Inches)	Flow Rate (GPM)
1 1/4	0.8 - 95
1 1/2	1 - 130
2	2 - 210
2 1/2	2.5 - 230
3	4 - 460
4	8 - 800
6	15 - 1,800
8	26 - 3,100
10	42 - 4,900
12	60 - 7,050
14	72 - 8,600
16	98 - 11,400
18	120 - 14,600
20	150 - 18,100
24	230 - 26,500
30	360 - 41,900
36	510 - 60,900

ſ

F-1110 SPECIFICATIONS cont.

MATERIAL

components:
Electroless nickel plated brass
316 stainless steel
S ENCLOSURE
Weathertight aluminum enclosure
Submersible enclosure
CONNECTIONS
quency output
10' of cable with ½" NPT
conduit connection
Indoor DIN connector with 10'

of plenum rated cable

ALSO AVAILABLE

Display Modules

Btu Measurement Systems

F-1110 Wiring Information

WIRE COLOR	DESCRIPTION	NOTES
RED	(+) 24 V AC/DC supply voltage, 50 mA	Connect to power supply positive
BLACK	(-) Common ground (Common with pipe ground)	Connect to power supply negative & analog input ground
GREEN	(+) Frequency output signal: 0-15 V peak pulse	Required when meter is connected to local display or Btu meter
BLUE	(+) Analog signal: 4-20 mA (non-isolated)	Both signals may be used
BROWN	(+) Analog signal: 0-10 V (non-isolated)	independently.

F-1110 Wiring Diagram

Flow meter into control system (no display or Btu meter)

NOTE:

E: 1. Black wire is common with the pipe ground (typically earth ground).

2. Frequency output required for ONICON display module or Btu meter, refer to wiring diagram for peripheral device.

1500 North Belcher Road, Clearwater, FL 33765 • Tel (727) 447-6140 • Fax (727) 442-5699 www.onicon.com • sales@onicon.com

TITAN BTU Insertion Vortex

Product Features

- Complete BTU, water, gas or steam measurement solutions.
- Standardize on an insertion bar that can measure line sizes 1.5" – 36"
- Heavy Duty & Maintenance Free Design
- All parts are welded stainless steel construction
- No moving parts, No holes to clog
- Life-time repeatability
- 1" NPT Connection
- Dual Piezo Sensors never contact fluid
- Dual Thermistor Sensors
 <u>+</u>.1 Deg^oC accuracy
- No pins or screws to corrode and rust
- Can handle process pressure over 500 psig
- Can handle process temperature up to 450 °F
- Simultaneous 4-20 mA, programmable Pulse output..

Model TITAN BTU General Specification

Accuracy • Reliability • Standardization • Installation

The **TITAN** vortex sensing element is CNC machined out of one piece of solid stainless steel. The ceramic ISO Piezo electric sensors are bonded inside the vortex element which is press fit to the stainless steel insertion bar and completely welded together. There are NO internal o-rings or seals of any kind and absolutely NO leak paths into the sensors or electronics. Our sensors NEVER touch the process fluid giving them an almost unlimited life span. Our elements are ONE-PIECE technology and geometry will NEVER change.

With over 100 years of combined CNC machining experience our solid stainless steel **TITAN** vortex element has no pins, screws or gaskets of any kind. The bluff body and tail piece are CNC machined from the body of the element. Since there are no holes to clog and no moving parts, there are no mechanical limitations due to frequency or velocities. Our machined elements will never wear or move out of place, giving the same steady frequency from the first day to year thirty.

Each **TITAN** comes with its own seal assembly that rides along the shaft of the insertion bar. This stainless steel seal assembly has a 1" NPT connection for easy connect and disconnect with any valve, thread-o-let or any ANSI class flange. The **TITAN** can be installed or removed during flow with a 1" fully ported ball valve during higher pressure applications.

The unique design of the **TITAN** can be used in BTU measurement calculations for LIQUID lines. The same **TITAN** design can measure water as low as slow as 1 feet per second to excess of 30 feet per second.

The **TITAN** has no moving or wearing parts making certain that the K Factor, pulses per foot – per second, will not change over time and long term accuracy is always constant. This allows all of our insertion instruments to achieve an accuracy of $\pm 1\%$ of reading with $\pm .25\%$ repeatability.

The **TITAN** has dual Thermistors for temperature measurement with accuracies of \pm .1 °C. All Thermistors are epoxy coated, precision matched to 5 standardized resistance curves. Maximum working temperature is 150°C.

Where Flow Measurement Meets Innovation...

tel: 732.952.5324 fax: 732.727.8911 <u>sales@niceinstrumentation.com</u> www.niceinstrumentation.com

Model # TITAN-XX-X(XX)-XX-XX

Category	Description	Suffix Codes					
TITAN IV TITAN IV/BTU	Insertion Vortex Flow Meter Insertion Vortex Flow Meter with BTU calculation.	TITAN	-	_	_	_	
Line Sizes	Standard line sizes 1.5" to 36"		1.5 36				
Microtel Transmitter Display	Volumetric Flow Only Total BTU calculations (1 external Temperature sensor)			V BTU			
Power Supply	Standard 24 V dc input	_ _ _			24 		
-250 to 450 °F -	Standard Temperature -250 to 450 °F	_	_	_	_	LT — —	

Notes:

- 1. Your registered representative will use Nice Instrumentation Vortex Sizing Application to determine precise scaling factor for your application.
- 2. The Standard remote option comes with 30 feet of cable and available up to 300 feet from meter.
- 3. Unit has 4-20mA output
- 4. OPTIONAL Enclosure for remote display is NEMA 4X watertight and explosion proof requirements.
 - FM Approved UL Classified
 - CSA Approved
 - ATEX for use in;
 - Class I, Groups B,C & D,
 - Class II, Groups E,F & G and
 - Class III hazardous locations as
 - defined by the National Electrical Codes
 - and Canadian Electrical Code.

Nice Vortex Sizing Program for precise application sizing

Please specify the following information with your order:

- Fluid Type
- Min Max operating flow rate
- Operating Temperature
- Operating Pressure

tel: 732.952.5324 fax: 732.727.8911 <u>sales@niceinstrumentation.com</u> www.niceinstrumentation.com

Next Generation Vortex Technology

Over 20 years of experience building and designing dependable and accurate Vortex Flow Meters

Project Information			Vortex Meter	Customer Application
CDH Energy Project: Hot Water Serial Number: TI	r Measurement TAN/IV-1.5-L		K-FACTOR: 13.60 PLS/LIN. FT. DENSITY: 63.00 LB/FT ³	CUSTOMER TURNDOWN: 11.94 TO 1 FREQUENCY MIN: 17.95 PLS/SEC FREQUENCY MAX: 214.3 PLS/SEC
Fluid Liquid	MeterType TITAN	Line Size	PIPE ID: 1.610 IN. METER MIN: 8.375 GAL/MIN	SCALING FACTOR: 128.6 PULSES/GAL CUSTOMER V-MIN: 1.320 FT/SEC. MIN CUSTOMER V-MAX: 15.76 FT/SEC. MAX
Temp.	Schedule 40	Pressure	METER MAX: 190.4 GAL/MIN METER TURNDOWN: 22.73 TO 1	ACFM MIN: 1.120 ACFM MAX: 13.37 MICROTEL SF: 128896

Customer Min & Max Flow

Min: 8.375 GAL/MIN

Max: 100.0 GAL/MIN

Where Flow Measurement Meets Innovation

1

Straight Run Piping Requirements	Upstream	Downstream
One 90° elbow before the meter	10 D	5 D
Two 90° elbows before the meter	15 D	5 D
Two 90° elbows out of plane	30 D	5 D
before the meter		
Reduction before the meter	10 D	5 D
Regulator or Valve partially closed	30 D	5 D
before the meter		

D=Pipe Diameter

February 1, 2012

TI SERIES

Immersion Temperature Sensors

Steel Probe

DESCRIPTION

These immersion probe type temperature sensors are both highly accurate and cost effective. Installation could not be easier. The sensor is encased in a corrosionresistant stainless steel probe for durability, with a choice of service entry body, indoor junction box, or threaded enclosures. A variety of RTD or thermistor sensor options and probe lengths are available for maximum application versatility.

APPLICATIONS

- Tanks
- Pipes
- Chillers

Class		Pt	RTD	THERMISTOR											
Туре		100 0hm	1000 Ohm	2.2k	3k	10k Type 2	10k Type 3	10k Dale	10k 3A221	10k "G" US	20k	20k "D"	100k	10k Type 2	10k Type 3
Accuracy	1	±0.3°C	±0.3°C	±0.2°C	±0.2°C	±1.0°C	±0.2°C	±0.2°C	±1.1°C	±0.2°C	Consult	Consult	Consult	±0.1°C 20/70°C	±0.1°C
		0.0385 curve	0.0385 curve	0/70°C	0/70°C	-50/150°C	0/70°C	-20/70°C	0/70°C	0/70°C	Factory	Factory	Factory	±0.2°C 0/20°C	0/70°C
Temp. Re	esponse*	PTC	PTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC	NTC
*PTC · Positio	ve Temneratur	e Coefficient												High Ac	curacy
*NTC: Negat	tive Temperatu	ure Coefficient												-	
					STAN	DARD RT	D AND T	HERMIS	TOR VAL	UES (Ohi	ms Ω)				
°C	°F	100 0hm	1000 Ohm	2.2k	3k	10k Type 2	10k Type 3	10k Dale	10k 3A221	10k "G" US	20k NTC	20k "D"	100k	10k Type 2	10k Type 3
-50	-58	80.306	803.06	154,464	205,800	692,700	454,910	672,300	-	441,200	1,267,600	-	-	692,700	454,910
-40	-40	84.271	842.71	77,081	102,690	344,700	245,089	337,200	333,562	239,700	643,800	803,200	3,366,000	344,700	245,089
-30	-22	88.222	882.22	40,330	53,730	180,100	137,307	177,200	176,081	135,300	342,000	412,800	1,770,000	180,100	137,307
-20	-4	92.160	921.60	22,032	29,346	98,320	79,729	97,130	96,807	78,910	189,080	220,600	971,200	98,320	79,729
-10	14	96.086	960.86	12,519	16,674	55,790	47,843	55,340	55,252	47,540	108,380	122,400	553,400	55,790	47,843
0	32	100.000	1000.00	7,373	9,822	32,770	29,588	32,660	32,639	29,490	64,160	70,200	326,600	32,770	29,588
10	50	103.903	1039.03	4,487	5,976	19,930	18,813	19,900	19,901	18,780	39,440	41,600	199,000	19,930	18,813
20	68	107.794	1077.94	2,814	3,750	12,500	12,272	12,490	12,493	12,260	24,920	25,340	124,900	12,500	12,272
25	77	109.735	1097.35	2,252	3,000	10,000	10,000	10,000	10,000	10,000	20,000	20,000	100,000	10,000	10,000
30	86	111.673	1116.73	1,814	2,417	8,055	8,195	8,056	8,055	8,194	16,144	15,884	80,580	8,055	8,195
40	104	115.541	1155.41	1,199	1,598	5,323	5,593	5,326	5,324	5,592	10,696	10,210	53,260	5,323	5,593
50	122	119.397	1193.97	811.5	1,081	3,599	3,894	3,602	3,600	3,893	7,234	6,718	36,020	3,599	3,894
60	140	123.242	1232.42	561.0	747	2,486	2,763	2,489	2,486	2,760	4,992	4,518	24,880	2,486	2,763
70	158	127.075	1270.75	395.5	527	1,753	1,994	1,753	1,751	1,990	3,512	3,100	17,510	1,753	1,994
80	176	130.897	1308.97	284.0	378	1,258	1,462	1,258	1,255	1,458	2,516	2,168	12,560	1,258	1,462
90	194	134.707	1347.07	207.4	-	919	1,088	917	915	1,084	1,833	1,542	9,164	919	1,088
100	212	138.506	1385.06	153.8		682	821	679	678	816.8	1,356	1,134	6,792	682	821
110	230	142.293	1422.93	115.8	-	513	628	511	509	623.6	1,016	816	5,108	513	628
120	248	146.068	1460.68	88.3		392	486	389	388	481.8	770	606	3,894	392	486
130	266	149.832	1498.32	68.3	-	303	380	301	299	376.4	591	456	3,006	303	380
Senso	r Codes	B	C	F	F	D	н	1	s	R	м	U	Т	W	Y

To compute Linitemp Temperature:

2-Wire version $(1\mu A/°C)$ µA reading - 273.15=Temperature in °C 3-Wire version (10mV/°C) mV reading/10 - 273.15 = Temperature in $^{\circ}$ C

SPECIFICATIONS

Warranty	
Wiring	22 AWG; 2-wire: RTD Thermistor, 4-20mA; 3-wire: Voltage output models
Probe	Stainless Steel
Test Pressure	200 psi
Linitemp:	
Input Power	5 to 30VDC
Output	1µA/°C or 10mV/°C
Operating Temperature	-25° to 105°C (-13° to 221°F)
Resistive:	
RTD/Thermistor	See table, above
Accuracy:	
Calibration Error	1.5°C (2.7°F) typical; 2.5°C (4.5°F) max. at 25°C (77°F)*
Error over Temperature	1.8°C (3.24°F) typical; 3.0°C (5.4°F) max. over 0° to 70°C (32° to 158°F) range;

FEATURES

- Cost-effective high accuracy thermistors/RTDs
- Corrosion resistant stainless steel probe design...durable
- 1/2" NPT threads standard...ease of selection
- Variety of enclosures include duct mount, service entry body, threaded, and water resistant to fit your application
- Thermowells available...enables easy servicing

*Room temperature error documented on each unit.

2.0°C (3.6°F) typical, 3.5°C (6.3°F) max. over -25° to 105°C (-13° to 221°F) range

VERIS INDUSTRIES

DIMENSIONAL DRAWINGS

www.veris.com

Appendix B

Logger Wiring Diagram and Details

Instrumentation, Wiring Schematic, and Installation Details

Site Visits

March 16, 2012	Initial site visit (Adam Walburger)
March 22, 2012	Datalogger and sensors rough in. DAS system operational but
	incomplete (Adam Walburger).
May 2, 2012	Datalogger and sensors rough in completed. DAS system operational,
	awaiting gas meter installation and engine startup (Adam Walburger).
July 12,2012	Temperature sensors, power meters, steam flow rates verified. TLS1 and
	TLR1 wires switched and TLS2 and TLR3 wires switched. Cellular
	modem installed. System operational. Awaiting gas meter installation
	(Adam Walburger & Pilar Lyons).
September 7, 2012	Temperature sensors and flow meters verified. Boiler loop flow meter
	(FL2) flipped to face correct direction. System operational. Awaiting
	gas meter installation (Adam Walburger).

Description of Monitored Data Points and Schematics

Table B-1 lists the monitored points installed at the site. The wiring schematic for the logger are shown in Figure B-1 and Figure B-2.

Table B-1. Monitored Data Point List

Parker Jewish Hospital Logger Terminations							
Logger Input	Data Point	Description	Units	Sensor	Signal Type	Multiplier/Pulse Rate	Note
CH-1	WG	Generator Electrical Output (Combined)	kW/kWh	WattNode WNB-3Y-208-P 1200 A Cts	Pulse	0.025 kWh/pulse	
CH-2	WPAR	Parasitic Load Electrical Consumption	kW/kWh	WattNode WNB-3Y-208-P 200 A Cts	Pulse	0.005 kWh/pulse	
CH-3	FL1	Glycol DHW Loop Flow Rate	GPM	Onicon F-1110	4-20 mA	0-150 GPM	
CH-4	FL2	Boiler Water Loop Total Flow Rate	GPM	TLS	4-20 mA	8.375 - 190.4 GPM	
CH-5	FG	Combined Generator Fuel Input	CF	Utility Pulser	Pulse	TBD	
CH-6							
CH-7							
CH-8							
EXP-1-1	TLS1	Glycol DHW Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-76
		Glycol DHW Loop Return Temperature from HX					
EXP-1-2	TLR1	loads, upstream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-77
		Glycol DHW Loop Return Temperature down					
EXP-1-3	TLR2	stream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Strap on thermistor
EXP-1-4	TLS2	Boiler Water Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-74
EXP-1-5	TLR3	Boiler Water Loop Return Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor #4-75
EXP-1-6							
EXP-1-7							
EXP-1-8							

Obvius Acquisuite A8812 Data Logger Main Board Input Terminals

Figure B-1. Obvius Data Logger Wiring Schematic

Obvius Acquisuite A8332-8F2D Flex IO Module Expansion Board Input Terminals

(+) 24 VDC			
IN1	Red	TLS1	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN2	Red	TLR1	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN3	Red	TLR2	Veris TIG 10k Type II Thermistor (Strap on)
G	Black		
(+) 24 VDC			
IN4	Black	TLS2	Veris TIG 10k Type II Thermistor
G	Red		
(+) 24 VDC			
IN5	Red	TLR3	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN6			
G			
(+) 24 VDC			
IN7			
G			
(+) 24 VDC			
IN8			
G			

Figure B-2. Obvius Expansion Board Wiring Schematic

Photos of Installed Sensors

WG – CT Location

WPAR – CT Location

WG, WPAR – Power Transducer Location

Data Logger and Power Transducer Panel Location

HX 1 and TLS1, TLR1 Location on DHW Loop Piping

TLR2 Location (Overhead) Returning from Dump HX (Above Roof)

TLS2, TLR3, FL2 Location on Boiler Loop Piping (Overhead)

FL2 Transmitter

Cellular Modem on Top of Data Logger Panel in Boiler Room

Obvius Data Logger

Gas Meter (No Pulse Output as of 2012 July 12)

Instrumentation, Wiring Schematic, and Installation Details

Site Visits

March 16, 2012	Initial site visit (Adam Walburger)
March 22, 2012	Datalogger and sensors rough in. DAS system operational but
	incomplete (Adam Walburger).
May 2, 2012	Datalogger and sensors rough in completed. DAS system operational,
	awaiting gas meter installation and engine startup (Adam Walburger).
July 12,2012	Temperature sensors, power meters, steam flow rates verified. TLS1 and
	TLR1 wires switched and TLS2 and TLR3 wires switched. Cellular
	modem installed. System operational. Awaiting gas meter installation
	(Adam Walburger & Pilar Lyons).
September 7, 2012	Temperature sensors and flow meters verified. Boiler loop flow meter
	(FL2) flipped to face correct direction. System operational. Awaiting
	gas meter installation (Adam Walburger).

Description of Monitored Data Points and Schematics

Table B-1 lists the monitored points installed at the site. The wiring schematic for the logger are shown in Figure B-1 and Figure B-2.

Table B-1. Monitored Data Point List

Parker Jewish Hospital Logger Terminations							
Logger Input	Data Point	Description	Units	Sensor	Signal Type	Multiplier/Pulse Rate	Note
CH-1	WG	Generator Electrical Output (Combined)	kW/kWh	WattNode WNB-3Y-208-P 1200 A Cts	Pulse	0.025 kWh/pulse	
CH-2	WPAR	Parasitic Load Electrical Consumption	kW/kWh	WattNode WNB-3Y-208-P 200 A Cts	Pulse	0.005 kWh/pulse	
CH-3	FL1	Glycol DHW Loop Flow Rate	GPM	Onicon F-1110	4-20 mA	0-150 GPM	
CH-4	FL2	Boiler Water Loop Total Flow Rate	GPM	TLS	4-20 mA	8.375 - 190.4 GPM	
CH-5	FG	Combined Generator Fuel Input	CF	Utility Pulser	Pulse	TBD	
CH-6							
CH-7							
CH-8							
EXP-1-1	TLS1	Glycol DHW Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-76
		Glycol DHW Loop Return Temperature from HX					
EXP-1-2	TLR1	loads, upstream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-77
		Glycol DHW Loop Return Temperature down					
EXP-1-3	TLR2	stream of dump radiator	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Strap on thermistor
EXP-1-4	TLS2	Boiler Water Loop Supply Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor # 4-74
EXP-1-5	TLR3	Boiler Water Loop Return Temperature	deg F	Veris TIG 10k Type II Thermistor	Resistance	n/a	Thermistor #4-75
EXP-1-6							
EXP-1-7							
EXP-1-8							

Obvius Acquisuite A8812 Data Logger Main Board Input Terminals

Figure B-1. Obvius Data Logger Wiring Schematic

Obvius Acquisuite A8332-8F2D Flex IO Module Expansion Board Input Terminals

(+) 24 VDC			
IN1	Red	TLS1	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN2	Red	TLR1	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN3	Red	TLR2	Veris TIG 10k Type II Thermistor (Strap on)
G	Black		
(+) 24 VDC			
IN4	Black	TLS2	Veris TIG 10k Type II Thermistor
G	Red		
(+) 24 VDC			
IN5	Red	TLR3	Veris TIG 10k Type II Thermistor
G	Black		
(+) 24 VDC			
IN6			
G			
(+) 24 VDC			
IN7			
G			
(+) 24 VDC			
IN8			
G			

Figure B-2. Obvius Expansion Board Wiring Schematic

Photos of Installed Sensors

WG – CT Location

WPAR – CT Location

WG, WPAR – Power Transducer Location

Data Logger and Power Transducer Panel Location

HX 1 and TLS1, TLR1 Location on DHW Loop Piping

TLR2 Location (Overhead) Returning from Dump HX (Above Roof)

TLS2, TLR3, FL2 Location on Boiler Loop Piping (Overhead)

FL2 Transmitter

Cellular Modem on Top of Data Logger Panel in Boiler Room

Obvius Data Logger

Gas Meter (No Pulse Output as of 2012 July 12)